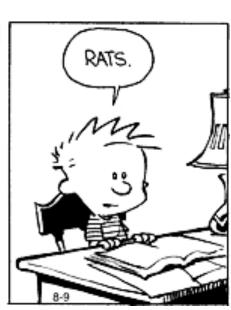
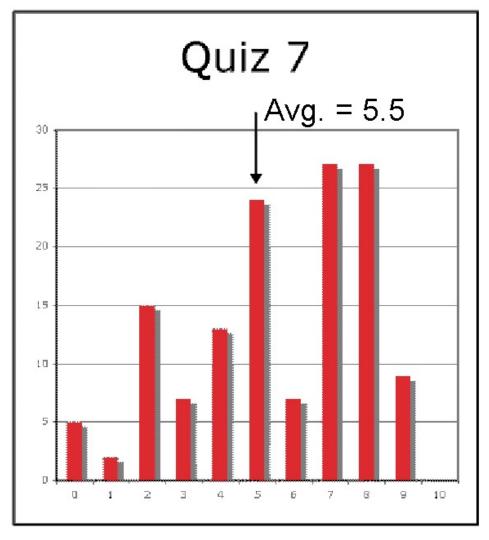
■ Theme Music: Human League Together in Electric Dreams


■ Cartoon: Bill Watterson Calvin & Hobbes

April 6, 2011



Outline

- Go over Quiz 7
- Fields:
 - Definition
 - Equations
 - Standard examples: points, lines, sheets
 - Multiple sheets

Quiz 7

			1	
	7.1	7.2	7.3	7.4
а	6%	3%	7%	7%
b	43%	5%	24%	72%
С	27%	18%	1%	10%
d	4%	6%	63%	3%
е	68%	1%	1%	2%
f	8%	67%	0%	0%
be				4%

In Equations

$$\vec{F}_{q} = \vec{F}_{Q_{1} \to q} + \vec{F}_{Q_{2} \to q} + \vec{F}_{Q_{3} \to q} + \vec{F}_{Q_{4} \to q} + \dots$$

$$\vec{F}_{q} = \frac{k_{C}qQ_{1}}{r_{1}^{2}}\hat{r}_{1} + \frac{k_{C}qQ_{2}}{r_{2}^{2}}\hat{r}_{2} + \frac{k_{C}qQ_{3}}{r_{3}^{2}}\hat{r}_{3} + \frac{k_{C}qQ_{4}}{r_{4}^{2}}\hat{r}_{4} + \dots$$

where

 r_1 = distance from Q_1 to q

 r_2 = distance from Q_2 to q

 \hat{r}_1 = direction from Q_1 to q (mag. 1, no units!)

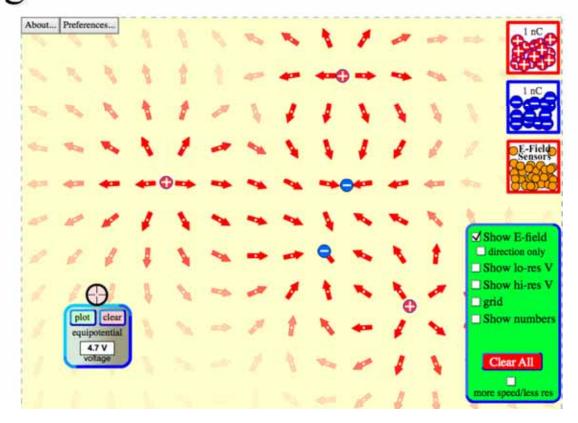
 \hat{r}_2 = direction from Q_2 to q (mag. 1, no units!)

• • •

Making sense

- Notice that F_q/q does NOT depend on q!
- For one source charge

$$\vec{F}_q = \frac{k_C q Q_1}{r_1^2} \hat{r}_1 \qquad \vec{E}_q = \frac{\vec{F}_q}{q} = \frac{k_C Q_1}{r_1^2} \hat{r}_1$$


■ For many sources

$$\vec{F}_{q} = \frac{k_{C}qQ_{1}}{r_{1}^{2}}\hat{r_{1}} + \frac{k_{C}qQ_{2}}{r_{2}^{2}}\hat{r_{2}} + \frac{k_{C}qQ_{3}}{r_{3}^{2}}\hat{r_{3}} + \dots \qquad \vec{E}_{q} = \frac{\vec{F}_{q}}{q} = \frac{k_{C}Q_{1}}{r_{1}^{2}}\hat{r_{1}} + \frac{k_{C}Q_{2}}{r_{2}^{2}}\hat{r_{2}} + \frac{k_{C}Q_{3}}{r_{3}^{2}}\hat{r_{3}} + \dots$$

■ Why not? Why did I label E with a q?

Simulation

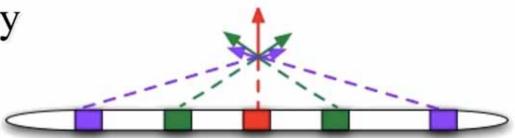
http://phet.colorado.edu/en/simulation/ charges-and-fields

Four standard examples (useful as approximate models)

■ Point charge

■ Dipole

■ Uniform long line of charge



■ Uniform large sheet of charge

How?

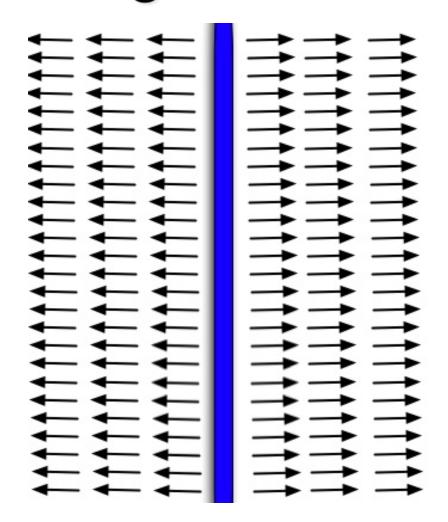
■ Different kinds of charge density

$$[\lambda] = \left[\frac{Q}{L}\right] \qquad [\sigma] = \left[\frac{Q}{L^2}\right]$$

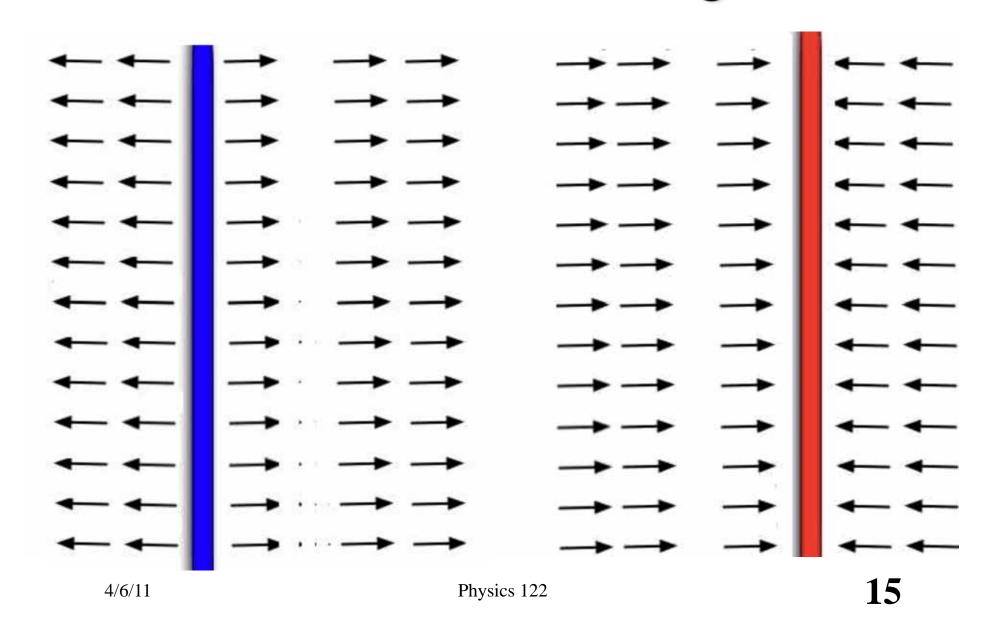
■ Dimensional analysis

$$[E] = k \left\lceil \frac{Q}{L^2} \right\rceil \qquad [E] = k \left\lceil \frac{\lambda}{L} \right\rceil \qquad [E] = k \left[\sigma \right]$$

The dependences

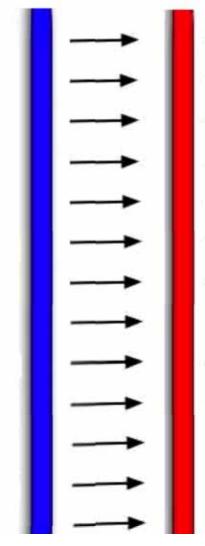

$$E = \frac{k_C Q}{r^2}$$

■ Long line
$$\lambda$$
 [C/m]: $E = \frac{2k_C\lambda}{d}$


■ Flat sheet
$$\sigma$$
 [C/m²]: $E = 2\pi k_C \sigma$

The sheet of charge

- Field is constant,
 pointing away from
 positive sheet, towards
 negative sheet.
- Constant!!?
 How can that be?


Two sheets of charge

Result

The fields of the two plates cancel each other on the outside.

The fields of the two plates add on the inside, producing double the field of a single plate.

The fields of the two plates cancel each other on the outside.