■ Theme Music: U2 Electric Storm

■ <u>Cartoon:</u> Bob Thaves Frank & Ernest

Outline

- Recap: Newton's Laws
- More than two charges: Superposition
- **■** Examples
- ILD 4: Representation as Communication

Causes of Motion: Newton's Laws

- N0: Objects only respond to forces on themselves, at the time those forces are exerted.
- N1: Objects change their velocity (perhaps = 0) only if they are acted on by unbalanced forces.
- N2: Each object responds to the forces it feels by changing its velocity according to $\vec{a} = \vec{F}^{net} / m$
- N3: When two objects touch, they exert equal and opposite forces on each other. $\vec{F}_{A \rightarrow B} = -\vec{F}_{B \rightarrow A}$

Foothold ideas: Coulomb's Law

- Depends on the "test" charge
- Depends on the "source" charge
- Depends on the distance between the charges
- The sign gives direction

$$F_{Q \to q} = F_{q \to Q} = \frac{\kappa_C q Q}{R^2}$$

Sample problem

A rod is rubbed so that it has a charge of 4 µC on the tip. It is brought up near to a charged pith ball hanging from a string. As the rod approaches, the ball is repelled. When the end of the rod is just below the point where the string is attached, the pith ball hangs at θ = 30°. The pith ball has a mass of 10 grams. How much charge is on the pith ball?

Multiple Charges: Superposition

- One charge is <u>too</u> simple.

 Most of the time there are <u>lots</u> of charges.
- What do we do if we have more than one source charge creating forces on our test charge?

Superposition: We calculate the force each charge produces and add them like vectors – just like we would any forces.

ILD #4: Fields

4/7/10

4/7/10 Physics 122 **16**