Theme Music: Duke Ellington Take the A Train

Cartoon: Lynn Johnson For Better or for Worse

March 4, 2011

Knowledge Games

- Shopping for ideas
- Choosing foothold ideas
- Reconciling intuition
- Multiple representations

- Elaboration / Implication
- Seeking consistency
- Sense making



3/4/11 Physi2s 122

Estimation: Some numbers I will expect you to know

Numbers

 number of UG students at UMd 	~ 25,000	2.5×10^4
 number of people in MD 	\sim 4-5 million	4.5×10^6
 number of people in USA 	~ 300 million	3.0×10^8
 number of people in world 	~ 6 billion	6.5×10^9

Distances

distance across DC	~10 miles
distance across USA	~3000 miles
 distance around the world 	~24,000 miles
 radius of the earth 	$= 2/\pi \times 10^7 \text{ m}$

Causes of Motion: Newton's Laws

- N0: Objects only respond to forces on themselves, at the time those forces are exerted.
- N1: Objects change their velocity (perhaps = 0)
 only if they are acted on by unbalanced forces.
- **N2**: Each object responds to the forces it feels by changing its velocity according to $\vec{a} = \vec{F}^{net} / \vec{a}$
- **N3**: When two objects touch, they exert equal and opposite forces on each other.

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

Kinds of forces

There are 2 classes of forces

Touching

- Normal N (perpendicular to surface and pressing in)
- Tension T (pulling out of the surface)

5

Friction — f (parallel to surface — opposing sliding)

Non-touching

- Gravity W
- Electric F^{elec}
- Magnetic F^{mag}

Properties of Forces

- Normal adjust to oppose compression (like a spring)
- Tension t. force vs. t. scalar, analysis of the chain

$$T = k \Delta l$$

 Friction — opposes sliding of surfaces over one another

$$\begin{split} f_{A \to B} &\leq f_{A \to B}^{\max} = \mu_{AB}^{static} N_{A \to B} & \text{not sliding} \\ f_{A \to B} &= \mu_{AB}^{kinetic} N_{A \to B} & \text{sliding} \\ \mu_{AB}^{kinetic} &\leq \mu_{AB}^{static} \end{split}$$

 Gravity — towards the center of the earth, proportional to mass

$$\vec{W} = -\frac{GmM}{R^2} \hat{R} \approx m\vec{g}$$

Math

- Dimensional analysis
- Shifting functions
- Properties of trig functions, large angles
- Functions of two variables
- Small angle approximation

Foothold ideas: Mass on a spring

- There is an equilibrium (balance) point where the mass can stay without moving.
- Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.
- When it gets back to its equilibrium, it's still moving so it overshoots.

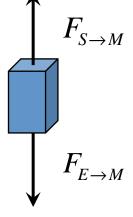
Summary with Equations:

Mass on a spring

$$a = \frac{1}{m}F^{net}$$

$$F^{net} = -kx$$

Measured from where?

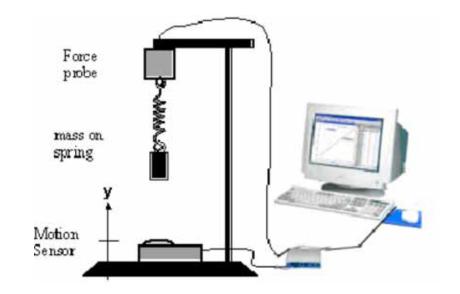


$$a = -\omega_0^2 x$$

$$\omega_0^2 = \frac{k}{m}$$

$$x(t) = A\cos(\omega_0 t - \phi)$$

$$\omega_0 = \frac{2\pi}{T}$$
Interpret!



Foothold Ideas: Energy and Work

- We can rewrite N2 to focus on the part of the forces that change the object's <u>speed</u>.
- Define Kinetic Energy and Work

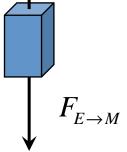
$$KE = \frac{1}{2}mv^2$$
 Work = $\vec{F}^{net} \cdot \Delta \vec{r}$

 Rewrite N2 by taking the dot product with the displacement (to select part of force acting along the motion)

$$\Delta \left(\frac{1}{2} m v^2 \right) = \vec{F}^{net} \cdot \Delta \vec{r}$$

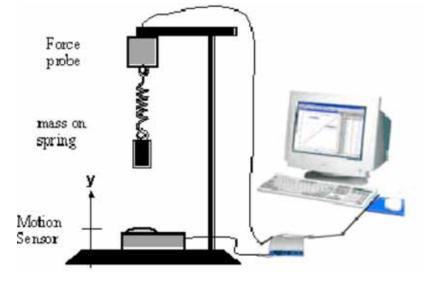
Summary with Equations: Mass on a spring (Energy)

Measured from where?



$$E = \frac{1}{2}mv^2 + mgh + \frac{1}{2}k(\Delta l)^2$$

$$E_i = E_f$$



The pendulum equations

$$\vec{a} = \frac{1}{m}\vec{F}^{net} = \frac{1}{m}(\vec{T} + m\vec{g})$$

$$F_x^{net} = T\sin\theta$$

$$F_y^{net} = T\cos\theta - mg$$

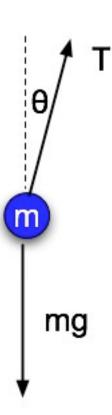
Very little up and down motion. Mostly left and right.

$$a_{x} = -\frac{1}{m}T\sin\theta = -\frac{T}{m}\frac{x}{L}$$

$$a_{y} \approx 0 = \frac{1}{m}(T\cos\theta - mg)$$

$$T \approx mg$$

$$a_x = -\frac{g}{L}x$$



Pendulum motion

$$a_x = -\frac{g}{L}x$$

$$\omega_0^2 = \frac{g}{L}$$

Same as mass on a spring! Just with a different ω_0 .

What's the period?
Why doesn't it depend on m?
What does the energy look like in this case?

Foothold principles: Mechanical waves

- Key concept: We have to distinguish the motion
 of the bits of matter and the motion of the pattern.
- Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)
- Matter speed: the speed of the bits of matter depend on both the size and shape of the pulse $v_0 = \sqrt{\frac{TL}{M}} = \sqrt{\frac{T}{\mu}}$ and on the pattern speed.
- Superposition: when one or more disturbances overlap, the result is that each point displaces by the sum of the displacements it would have from the individual pulses. (signs matter)
- Mechanism: the pulse propagates by each bit of string pulling on the next.

Sinusoidal waves

 Suppose we make a continuous wiggle.
 When we start our clock (t = 0) we might have created shape something like

$$y = A \sin kx$$

At later times this would look like

$$y = A\sin k(x - v_0 t)$$

Rewrite this as: $y = A \sin(kx - kv_0 t) = A \sin(kx - \omega t)$

$$\omega = k v_0$$

Interpretation

$$y = A\sin(kx - \omega t) \qquad \omega \equiv kv_0$$

$$\omega \equiv k v_0$$

Fixed time: Wave goes a full cycle when

$$kx:0\to 2\pi$$

$$x: 0 \to \frac{2\pi}{k} \equiv \lambda \qquad \text{(wavelength)}$$

Fixed position: Wave goes a full cycle when

$$\omega t: 0 \to 2\pi$$

$$t:0 \to \frac{2\pi}{\omega} \equiv T$$
 (period)

Find the dog

$$\omega = kv_0$$
?

Interpret

$$\omega = 2\pi f = \frac{2\pi}{T} \qquad k = \frac{2\pi}{\lambda}$$

$$k = \frac{2\pi}{\lambda}$$

$$\omega = k v_0 \implies 2\pi f = \frac{2\pi}{\lambda} v_0$$
 or

$$f\lambda = v_0$$
 (famous wave formula)

Interpret

$$\frac{1}{T}\lambda = v_0 \quad \Rightarrow \quad \lambda = v_0 T$$

Foothold Ideas

Light: The Physics

- Certain objects (the sun, bulbs,...) give off light.
- In empty space light travels in straight lines.
- Each point on an object scatters light, spraying it off in all directions.
- A polished surface reflects rays back again according to the rule: The angle of incidence equals the angle of reflection.
- When a ray of light enters a transparent medium at an angle it bends by the rule

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Foothold Ideas Light: The Psycho-physiology

- We only see something when light coming from it enters our eyes.
- Our eyes identify a point as being on an object when rays traced back converge at that point.

Kinds of Images

Real

- When the rays seen by the eye do converge at a point, the image is called *real*.
- If a screen is put at the real image, the rays
 will scatter in all directions and an image can be seen
 on the screen, just as if it were an object.

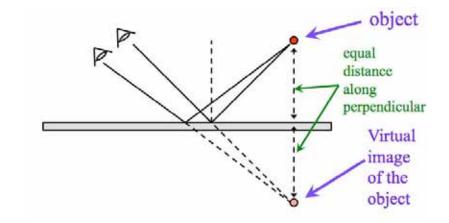
Virtual

- When the rays seen by the eye extrapolate to a point but don't meet, the image is called *virtual*.
- If a screen is put at the virtual image we see nothing on it since no rays are actually there.

Mirrors and Ray Tracing

Flat mirrors

The image is virtual,
 behind the mirror
 the same distance
 the object is in front
 of the mirror.



Curved mirrors

- Focal point f = R/2
- Three easy-to-figure rays
- Real and virtual images

