■ Theme Music: Sarah Brightman Memory

■ <u>Cartoon:</u> Jef Mallet Frazz.

Motivation

- Much of what we learn in school is a result of historical accident.
- But your education is not just for the purpose of getting you the certificate that lets you move on to the next stage.
- It should prepare you to be ready to respond to the future not live in the past.

Time Line

me my children

you

The changing work force

- Think about how the character of the American workforce has changed in the past 100 years.
 - 1900: Dominated by agriculture
 - 1950: Dominated by manufacturing
 - 2000: Dominated by computers/software
 - -2050: ?

Adaptive expertise

- The rapid pace of change in science implies that critical skills for scientists (and health-care professionals) in the next few decades will be
 - the ability to continue to learn
 - the ability to understand the implications of new discoveries
 - the ability to integrate new tools and knowledge into their practice of science.

1/26/11

In order to learn how to learn more effectively, we need to know something about how we think. A model of memory: Predicting the Past

- (a) Recalling past events
- (b) Imagining future events
- (c) Seeing things from someone else's perspective

(d) Navigation

From Buckner & Carroll Trends in Cog. Sci. 11:2 (2006)

The danger of one-step recall: Coherence – your safety net

- One-step recall simple association
 often leads you astray.
- Often the first thing you remember is wrong even when you are confident about it.
- Throughout the class we will be looking to make connections between the physics we are learning and what we know well.
- We will try to see physical situations in a variety of different ways.
- The consistency among the different views protects us against errors of reconstructed memory.

How do we know? Why do we believe...?

- This class is not about learning a set of scientific facts. It is about learning how to reason scientifically.
- The important thing is NOT (just) the correct answer; it's
 - Why do we think an answer is the answer?
 - What's the evidence for the answer?
 - How do we know if we are right once we think we have an answer?

What's the most frequently unnoticed element in this class?

- The laws, principles, and equations are about <u>physical systems</u>.
- Therefore, it is crucial to think about what is happening in the physics first.
- This may mean being able to run a movie in your head run it slo-mo or stop frame and be able to read off different variables from that movie.
- It may mean thinking about the parts of the system, how they interact, and how the fundamental physical principles apply.

Differences that make a difference

- It is essential to distinguish:
 - A quantity (e.g., position)
 - A change in a quantity (e.g., displacement)
 - A rate of change of a quantity (e.g., velocity)

$$q$$

$$\Delta q = q_{final} - q_{initial}$$

$$\frac{dq}{dt}$$

Knowledge Games

- Shopping for ideas
- Choosing foothold ideas
- Reconciling intuition
- Multiple representations

- Seeking consistency
- Sense making

1/26/11

Knowledge Games: Shopping for Ideas

■ When we begin the study of a subject we will often explore our experience to try to create a basis for understanding what's happening.

■ Example: Torque

Knowledge Games: Seeking Consistency

■ Building scientific knowledge is <u>not</u> a collection of independent facts.

- Every "fact" has implications.
- Everything has to fit together.
- This provides a safety net that allows you to check whether you have remembered your "facts" (or better, used your principles) correctly.

Knowledge Games: Choosing Foothold Ideas

- As we gather our experiences and data on a topic, we propose general principles that correlate and make sense of our observations.
- We then assume they are true and see what they imply.
- If those implications don't pan out (agree with observation), we may have to go back and modify them.

1/26/11

Example: Building Newton's Laws

- When we first starting looking into how to change an object's state of motion, we only looked at motion on a table. We found:
 - ➤ Objects only feel forces when something touches them. (Normal, tension, or frictional forces)
- We later decided we had missed something.
 - ➤ Objects only feel forces when something touches them (N, T, or f) plus the long-range (non-touching) force of gravity coming from the earth.

1/26/11 28

Knowledge Games: Reconciling Intuition

- Our intuitions are often based on direct, one-step reasoning;
 - "if A, then B"
 - but often it's really:"if A (and C is not changed), then B"
- We often have other intuitions that contradict our DOSR but we just haven't noticed.
 - Putting those carefully together is reconciling.

Knowledge Games: Elaboration / Implication

- Our "foothold ideas" become *principles* we reason with.
- Everything we assume is true has implications for situations other than the one in which we figured it out.
- Reasoning from principle is the fundamental characteristic of a mature science.

Knowledge Games: Sense Making

- We should more than just "know" a result in physics it should make sense to us.
- If you can see a result as making sense, you will find it much easier to remember accurately.
 - Memory is not like a photograph.
 It is highly compressed.
 - When you recall it, it is "reconstituted" using stock elements – and may mix together distinct memories.

Four mantras to keep in mind

- Beware one-step recall!

 Look for coherence with what else you know.
- Build your understanding on a sense of the physical and integrate it with your equations!
- Be careful to distinguish a quantity, a change in that quantity, and the rate of change of that quantity!
- The physics we are learning in this class is simple but seeing that it is simple is very difficult!