

Harmonic Motion

A. A cylinder is hung from a spring which is attached to a frame (see figure). The cylinder is pulled downward a distance y_{pull} and released. At the instant the cylinder passes its equilibrium position (as defined in the tutorial), a clock is started (t = 0).

Consider *two* coordinate systems to describe the motion of the cylinder. The first coordinate system is chosen with an origin $(y_b = 0)$ at the base of the frame, and the upward direction is considered positive. The cylinder is shown at rest at its equilibrium position, y_0 . The second coordinate system measures displacement from the cylinder's equilibrium position $(y_e = 0)$.

1. On the axes below, sketch graphs of y_b vs. t and y_e vs. t.

Account for any differences between the two graphs.

- 2. Write the general equation that gives y_e as a function of time for the y_e vs. t graph you sketched above.
- 3. Write the equation that gives y_b as a function of time. Explain how you arrived at your answer.

- 4. In the box at right, sketch a free-body diagram for the instant in time when the cylinder is located at $y_e = 0$. Label all forces like in tutorial. Are the forces the same in both coordinate systems?
- 5. Use your equations above to show that Newton's Second Law is the same in both coordinate systems. Show all work.