# Exam 2: Tuesday, April 25, 2006 Study Guide

#### **Topics Covered**

**Chapter 18: DC Circuits** 

**Sections: 18.1 – 18.5** 

- -Using Ohm's Law
- -Resistors in series and parallel (need to know how to find Req)
- -Be able to reduce a complicated resistor network to one single resistor
- -Kirchhoff's Rules for complex circuits
- -Be able to apply Kirchhoff's rules to solve for the currents
- -Power dissipated by a resistor
- -Charging and discharging a capacitor
- -RC circuits
- -Time constant
- -Qualitative circuit behavior

#### **Chapter 19: Magnetism**

# Sections: 19.1-19.8 (except for Ampere's Law in section 19.7)

- -Magnets and Magnetic fields
- -Magnetic force on a moving charge in a magnetic field
- -Magnetic force on a current in a magnetic field
- -Right hand rule for the direction of the force
- -Torque on a loop of current
- -Motion of a particle in a B-field
- -Velocity selector
- -Mass spectrometer
- -B-field of a current carrying wire
- -Right hand rule for finding the direction of the B-field created by the wire
- -Force between two parallel conductors

# although from ch.20 and 21, you should remember that:

- -Electric charges and changing B-fields are sources of E-fields
- -Moving electric charges and changing E-fields are sources of B-fields
- -changing E and B-fields propagate as electromagnetic waves
- -these wave propagate at the speed of light
- -light is a form of electromagnetic wave

### **Chapter 22: Reflection and Refraction**

Sections: 22.1 – 22.4, 22.7

- -Ray model for light rays
- -Reflection
- -Refraction
- -Index of refraction
- -Snell's law
- -Dispersion
- -Total internal reflection
- -Critical angle

### **Chapter 23: Mirrors and Lenses**

Sections: 23.1 – 23.3, 23.6, 23.7, also conceptual aspects of 23.4

- -Flat mirrors
- -Object distance and image distance
- -Concave and convex spherical mirrors
- -Be able to draw ray diagrams to locate images for spherical mirrors
- -focal length
- -mirror equation 1/do + 1/di = 1/f = 2/R
- -Lenses: converging and diverging
- -Be able to draw ray diagrams for lenses to locate images
- -Real and virtual images
- -Magnification

#### **Equations you are expected to know and understand:**

```
V = IR (Ohm's Law)
```

 $Req = R1 + R2 + R3 + \dots$  series resistors

 $1/\text{Req} = 1/\text{R}1 + 1/\text{R}2 + 1/\text{R}3 \dots$  parallel resistors

P = IV (power consumed by a resistor)

Kirchhoff's rules: I1 = I2 + I3, Sum of delta(V) around closed = 0

F = qvBsin(theta) or F = ILBsin(theta)

angle of incidence = angle of reflection (law of reflection)

 $n1\sin(\text{theta1}) = n2\sin(\text{theta2})$  Snell's Law

sin(thetaC) = n2/n1

M = hi/ho = -di/do

1/do + 1/di = 2/R = 1/f (know the sign conventions for using these for mirrors and lenses)

Things you should already know:

delta(KE) + delta(PE) = 0 (conservation of energy)

F = qE (electric force)

delta(PE) = q\*delta(V)