Lab 2: Damped Oscillations, Part Two

This week is a continuation of last week's activity.

You have been asked to design a metronome for a famous pianist, and you have decided to use a spring with a small mass attached, which will bounce up and down with the beat. Now, this metronome will only be useful if the period (or the time it takes for one full cycle) of an oscillation stays the same over a long enough time interval (at least for a three minute tune). When you let the spring oscillate for a long period of time, you observe that the amplitude gradually gets smaller. What about the period?

Question: What happens to the period of a spring over time?

This week you will focus on data analysis. Last week you took data to decide whether or not the period stayed the same. Today you're going to prove whether it does or doesn't. Your goal is to develop a strong, quantitative argument proving that either (a) the period stays the same, or (b) the period changes over time.

I. Introduction:	10 min	Whole class
II. Brainstorming and Planning Meeting:	10 min	Groups of 4
III. Carrying out the Experiment	$\mathbf{4 0} \mathrm{min}$	Groups of 4
IV. Class Discussion	$\mathbf{3 0} \mathrm{min}$	Whole Class
V. Evaluate and Reconsider:	15 min	Groups of 4

You will be turning in the following things in your lab report for a grade.
(From last week)

1. Journal
2. Evaluation
(From this week)
3. Data interpretation
4. Evaluation
