

Pressure

- The force exerted by a fluid on a submerged object at any point if perpendicular to the surface of the object

$$
\mathrm{P} \equiv \frac{\mathrm{~F}}{\mathrm{~A}} \text { in } \mathrm{Pa}=\frac{\mathrm{N}}{\mathrm{~m}^{2}}
$$

Pressure and Depth

- Examine the darker region, assumed to be a fluid
- It has a cross-sectional area A
- Extends to a depth h below the surface
- Three external forces act on the region

Pascal's Principle

- A change in pressure applied to an enclosed fluid is transmitted undimished to every point of the fluid and to the walls of the container.
- First recognized by Blaise Pascal, a French scientist (1623-1662)

Pascal's Principle, cont

- The hydraulic press is an important application of Pascal': Principle

$$
\mathrm{P}=\frac{\mathrm{F}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{F}_{2}}{\mathrm{~A}_{2}}
$$

- Also used in hydraulic brakes, forklifts, car lifts, etc.

\qquad

Pressure Measurements: Manometer

- One end of the U-shaped tube is open to the atmosphere
- The other end is connected to the pressure to be measured
- Pressure at B is $P_{o}+\rho g h$

Pressure Measurements: Barometer

- Invented by Torricelli (1608 1647)
- A long closed tube is filled with mercury and inverted in a dish of mercury
- Measures atmospheric pressure as $\rho g h$

Archimedes' Principle

- Any object completely or partially submerged in a fluid is buoyed up by a force whose magnitude is equal to the weight of the fluid displaced by the object.

Buoyant Force

- The upward force is called the buoyant force
- The physical cause of the buoyant force is the pressure difference between the top and the bottom of the object

Buoyant Force, cont.

- The magnitude of the buoyant force always equals the weight of the displaced fluid
- The buoyant force is the same for a totally submerged object of any size, shape, or density

$$
\mathrm{B}=\rho_{\text {fluid }} \mathrm{V}_{\text {fluid }} \mathrm{g}=\mathrm{W}_{\text {fluid }}
$$

Buoyant Force, final

- The buoyant force is exerted by the fluid
- Whether an object sinks or floats depends on the relationship between the buoyant force and the weight

Archimedes' Principle: Totally Submerged Object

- The upward buoyant force is $\mathrm{B}=\rho_{\text {fluid }} \mathrm{gV}_{\text {obj }}$
- The downward gravitational force is $w=m g=\rho_{o b j} g V_{\text {obj }}$
- The net force is $B-w=\left(\rho_{\text {fluid }}-\rho_{o b j}\right) g V_{\text {obj }}$

Totally Submerged Object, 2

- The object is more dense than the fluid
- The net force is downward
- The object accelerates downward

Archimedes' Principle: Floating Object

- The object is in static equilibrium
- The upward buoyant force is balanced by the downward force of gravity
- Volume of the fluid displaced corresponds to the volume of the object beneath the fluid level

Archimedes' Principle: Floating Object, cont

- The forces balance
-

$\frac{\rho_{\text {obj }}}{\rho_{\text {fluid }}}=\frac{V_{\text {fluid }}}{V_{\text {obj }}}$
U. Roberts \quad University of Maryland 121

A ball floats on water, as seen in the photograph below, but will sink when put into mineral spirits. The water is dyed green with food coloring to distinguish it from the clear mineral spirits. Note how far the floating ball sinks into the water.
When the mineral spirits is poured slowly onto the top of the water, it will remain on top because the two fluids are immiscible.
If the mineral spirits is poured slowly on top of the water while the ball is floating on the water, what will happen to the level at which the ball floats?

1. The ball will float lower in the water
2. The ball will float higher out of the water
3. The ball will float at the same level with respect to the surface of the water after the mineral spirits are poured on top of the water

[^0]

[^0]: \qquad

