

Angular Momentum

- Similarly to the relationship between force and momentum in a linear system, we can show the relationship between torque and angular momentum
- Angular momentum is defined as
- $L=\mid \omega$
- Vector quantity - right-hand rule determines direction
- Angular momentum is conserved in a system with no external torques
- and

$$
\sum \vec{\tau}=\frac{\Delta \vec{L}}{\Delta t}
$$

- Just like $\quad \sum \vec{F}=\frac{\Delta \vec{p}}{\Delta t}$

Angular Momentum, cont

- If the net torque is zero, the angular momentum remains constant
- Conservation of Angular Momentum states: The angular momentum of a system is conserved when the net external torque acting on the systems is zero.
- That is, when

$$
\begin{aligned}
& \Sigma \tau=0 \\
& \mathrm{~L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}} \\
& \text { or } \mathrm{I}_{\mathrm{i}} \omega_{\mathrm{i}}=\mathrm{I}_{\mathrm{f}} \omega_{\mathrm{f}}
\end{aligned}
$$

Conservation Rules, Summary

- In an isolated system (no external forces or torques, no non-conservative forces), the following quantities are conserved:
- Mechanical energy
- Linear momentum
- Angular momentum

Example Problem (8.60)

- A 12.0-kg object is attached to a cord that is wrapped around a wheel of radius $r=10.0 \mathrm{~cm}$. The acceleration of the object down the frictionless incline is measured to be $2.00 \mathrm{~m} / \mathrm{s}^{2}$. Assuming the axle of the wheel to be frictionless, determine
- (a) the tension in the rope
- (b) the moment of inertia of the wheel
- (c) the angular speed of the wheel 2.00 s after it begins rotating, starting from rest.

Density (Section 9.3)

- The density of a substance of uniform composition is defined as its mass per unit volume:

$$
\rho \equiv \frac{\mathrm{m}}{\mathrm{~V}}
$$

- Units are $\mathrm{kg} / \mathrm{m}^{3}(\mathrm{SI})$ or $\mathrm{g} / \mathrm{cm}^{3}$ (cgs)
- $1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Density, cont.

- The densities of most liquids and solids vary slightly with changes in temperature and pressure
- Densities of gases vary greatly with changes in temperature and pressure

Variation of Pressure with Depth

- If a fluid is at rest in a container, all portions of the fluid must be in static equilibrium
- All points at the same depth must be at the same pressure
- Otherwise, the fluid would not be in equilibrium
- The fluid would flow from the higher pressure region to the lower pressure region

Pressure and Depth

- Examine the darker region, assumed to be a fluid
- It has a cross-sectional area A
- Extends to a depth h below the surface
- Three external forces act on the region

Pascal's Principle

- A change in pressure applied to an enclosed fluid is transmitted undimished to every point of the fluid and to the walls of the container.
- First recognized by Blaise Pascal, a French scientist (1623-1662)

Pascal's Principle, cont

- The hydraulic press is an important application of Pascal': Principle

$$
\mathrm{P}=\frac{\mathrm{F}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{F}_{2}}{\mathrm{~A}_{2}}
$$

- Also used in hydraulic brakes, forklifts, car lifts, etc.

\qquad

Absolute vs. Gauge Pressure

- The pressure P is called the absolute pressure
- Remember, $\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\rho \mathrm{gh}$
- $P-P_{o}=\rho g h$ is the gauge pressure

Pressure Measurements: Manometer

- One end of the U-shaped tube is open to the atmosphere
- The other end is connected to the pressure to be measured
- Pressure at B is $P_{o}+\rho g h$

Pressure Measurements: Barometer

- Invented by Torricelli (1608 1647)
- A long closed tube is filled with mercury and inverted in a dish of mercury
- Measures atmospheric pressure as $\rho g h$

Pressure Values in Various Units

- One atmosphere of pressure is defined as the pressure equivalent to a column of mercury exactly 0.76 m tall at $0^{\circ} \mathrm{C}$ where $\mathrm{g}=9.80665$ $\mathrm{m} / \mathrm{s}^{2}$
- One atmosphere (1 atm) =
-76.0 cm of mercury
$-1.013 \times 10^{5} \mathrm{~Pa}$
- $14.7 \mathrm{lb} / \mathrm{in}^{2}$

