

Exam Info

$v=v_{0}+a t$	$W=\vec{F} \cdot \Delta \vec{x}=(F \cos \theta) \Delta x$
$x=\frac{1}{2} a t^{2}$	$W_{N e t}=\Delta K E$
$x=X_{0}+v_{0} t+\frac{1}{2} a t^{2}$	$K E=\frac{1}{2} m v^{2}$
$\Delta x=v_{0} t+\frac{1}{2} a t^{2}$	$P E_{g r a v}=m g h$
$\vec{I}=\vec{F} \Delta t=\Delta \vec{p}$	$P E_{s p r i n g}=\frac{1}{2} k x^{2}$
$\vec{p}=m \vec{v}$	$f_{s} \leq \mu_{s}\|n\|$

You may assume that $g=10 \mathrm{~m} / \mathrm{s}^{2}$ throughout the exam.

- Newton's Laws
- An object moves with a velocity that is constant in magnitude and direction, unless acted on by a nonzero net force.
- The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass:

$$
\vec{a}=\frac{\vec{F}_{\text {net }}}{m}
$$

- If object 1 and object 2 interact, the force exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force exerted by object 2 on object 1.

Exam Topics

- Vectors in more than one dimension
- Motion in 2-D
- Projectile motion
- Ramps
- Forces of friction
- Static friction
- Kinetic friction
- Statics
- Momentum
- Impulse
- Conservation of Momentum
- Energy
- Work
- Kinetic Energy
- Potential Energy (gravitational and spring)
- Conservation of Energy

Newton's Law of Universal Gravitation

- Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Applications of Universal Gravitation		
- Acceleration due to gravity	TABLE 7.1	
	Free-Fall Acc Various Altitu	
- g will vary with altitude	$\overline{\text { Altitude (} \mathrm{km})^{\text {a }}}$	$g\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
	${ }^{1000}$	${ }^{7.33}$
	2000	${ }^{5.68}$
	4000	3.70
	5000	3.08
	6000	2.60
$g=G \frac{M_{E}}{r^{2}}$	7000 8000	2.23 1.93
	9000	1.69
	10000	1.49
	50000	0.13
	conem	
D. Roberts Unive		PHYS 121

Gravitational Potential Energy

- $P E=m g y$ is valid only near the earth's surface
- For objects high above the earth's surface, an alternate expression is needed

$$
P E=-G \frac{M_{E} m}{r}
$$

- Zero reference level is infinitely far from the earth
- Otherwise, PE < 0 (negative)

Escape Speed

- The escape speed is the speed needed for an object to soar off into space and not return
- Initial Energy:

$$
\begin{aligned}
& E_{i}=K E+P E \\
& =\frac{1}{2} m v^{2}-G \frac{M_{E} m}{R_{E}}
\end{aligned}
$$

- Really far from the earth $(r \rightarrow \infty)$, $\mathrm{PE} \rightarrow 0$. To "escape", object needs to get infinitely far away. To just barely escape, it will slow down to zero at $r=\infty$, so $\mathrm{KE}=0$. This means total energy $=0$:

$$
0=\frac{1}{2} m v^{2}-G \frac{M_{E} m}{R_{E}}
$$

$$
\frac{1}{2} m v^{2}=G \frac{M_{E} m}{R_{E}}
$$

- For the earth, $\mathrm{v}_{\text {esc }}$ is about 11.2 km/s
- Note, v is independent of the mass of the object
$\nu_{\text {esc }}=\sqrt{\frac{2 G M_{E}}{R_{E}}}$

Kepler's Laws

- All planets move in elliptical orbits with the Sun at one of the focal points.
- A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
$-T^{2} \propto r^{3}$

Kepler's Third Law

- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
- For orbit around the Sun, $\mathrm{K}=\mathrm{K}_{\mathrm{s}}=2.97 \times 10^{-19} \mathrm{~s}^{2} / \mathrm{m}^{3}$
- K is independent of the mass of the planet

