

Centripetal Acceleration, cont.

- Centripetal refers to "center-seeking"
- The direction of the velocity changes
- The acceleration is directed toward the center of the circle of motion

(a)

(b)

Centripetal Acceleration

- The magnitude of the centripetal acceleration is given by

$$
a_{c}=\frac{v^{2}}{r}
$$

- This direction is toward the center of the circle
- The angular velocity and the linear velocity are related (v = ωr)
- The centripetal acceleration can also be related to the angular velocity

$$
a_{c}=\omega^{2} r
$$

Forces Causing Centripetal Acceleration

- Newton's Second Law says that the centripetal acceleration is accompanied by a force
$-F_{C}=m a_{c}$
$-F_{C}$ stands for any force that keeps an object following a circular path
- Tension in a string
- Gravity
- Force of friction

Banked Curves

- A component of the normal force adds to the frictional force to allow
higher speeds

$$
\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}
$$

$$
\text { or } \mathrm{a}_{\mathrm{c}}=\mathrm{g} \tan \theta
$$

Newton's Law of Universal Gravitation

- Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Universal Gravitation, 2

- G is the constant of universal gravitational
- $G=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- This is an example of an inverse square law

Universal Gravitation, 3

- The force that mass 1
exerts on mass 2 is equal and opposite to the force mass 2 exerts on mass 1
- The forces form a Newton's third law actionreaction

Applications of Universal Gravitation		
- Acceleration due to gravity	TABLE 7.1	
	Free-Fall Acc Various Altitu	
- g will vary with altitude	$\overline{\text { Altitude (} \mathrm{km})^{\text {a }}}$	$g\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
	${ }^{1000}$	${ }^{7.33}$
	2000	${ }^{5.68}$
	4000	3.70
	5000	3.08
	6000	2.60
$g=G \frac{M_{E}}{r^{2}}$	7000 8000	2.23 1.93
	9000	1.69
	10000	1.49
	50000	0.13
	conem	
D. Roberts Unive		PHYS 121

Gravitational Potential Energy

- $P E=m g y$ is valid only near the earth's surface
- For objects high above the earth's surface, an alternate expression is needed

$$
P E=-G \frac{M_{E} m}{r}
$$

- Zero reference level is infinitely far from the earth
- Otherwise, PE < 0 (negative)

Escape Speed

- The escape speed is the speed needed for an object to soar off into space and not return
- Initial Energy:

$$
\begin{aligned}
& E_{i}=K E+P E \\
& =\frac{1}{2} m v^{2}-G \frac{M_{E} m}{R_{E}}
\end{aligned}
$$

- Really far from the earth $(r \rightarrow \infty)$, $\mathrm{PE} \rightarrow 0$. To "escape", object needs to get infinitely far away. To just barely escape, it will slow down to zero at $r=\infty$, so $\mathrm{KE}=0$. This means total energy $=0$:

$$
0=\frac{1}{2} m v^{2}-G \frac{M_{E} m}{R_{E}}
$$

$$
\frac{1}{2} m v^{2}=G \frac{M_{E} m}{R_{E}}
$$

- For the earth, $\mathrm{v}_{\text {esc }}$ is about 11.2 km/s
- Note, v is independent of the mass of the object
$v_{\text {esc }}=\sqrt{\frac{2 G M_{E}}{R_{E}}}$

Kepler's Laws

- All planets move in elliptical orbits with the Sun at one of the focal points.
- A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals.
- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
$-T^{2} \propto r^{3}$

Kepler's Laws, cont.

- Based on observations made by Brahe
- Newton later demonstrated that these laws were consequences of the gravitational force between any two objects together with Newton's laws of motion

Kepler's Third Law

- The square of the orbital period of any planet is proportional to cube of the average distance from the Sun to the planet.
- For orbit around the Sun, $\mathrm{K}=\mathrm{K}_{\mathrm{S}}=2.97 \times 10^{-19} \mathrm{~s}^{2} / \mathrm{m}^{3}$
- K is independent of the mass of the planet

