

Announcement: WebAssign Bug

- There is an error in the WebAssign solution to problem 8 in HW 8
- The error only affects the first part of the problem
- It will not affect you if the mass of the heavier object is $3 m$
- If the mass of the heavier object is $2 m, 4 m$, or $5 m$, it will mark your answer to the first part as wrong even if it is correct
- The last two parts are not affected.
- I will go in by hand and check your answer to the first part and give credit if it is correct. So please go ahead and do the problem anyway.

From Last Time

- Angular velocity
- Angular Acceleration
- Angular equations of motion (constant angular acceleration)

$$
\omega=\omega_{i}+\alpha t
$$

$\Delta \theta=\omega_{i} t+\frac{1}{2} \alpha t^{2}$

- Relationship to linear motion quantities
- Subscript "t" refers to tangential motion

$$
\begin{aligned}
& s=r \theta \\
& v_{t}=r \omega \\
& a_{t}=r \alpha
\end{aligned}
$$

Example Problem (7.9)

- The diameter of the main rotor and tail rotor of a helicopter are 7.60 m and 1.02 m , respectively. The respective rotational speeds are $450 \mathrm{rev} / \mathrm{min}$ and 4,138 rev/min.
- Calculate the speeds of the tips of both rotors.
- Compare to the speed of sound, $343 \mathrm{~m} / \mathrm{s}$.

Centripetal Acceleration

- An object traveling in a circle, even if it moves with a constant speed, will have an acceleration
- The centripetal acceleration is due to the change in the direction of the velocity

Centripetal Acceleration, cont.

- Centripetal refers to "center-seeking"
- The direction of the velocity changes
- The acceleration is directed toward the center of the circle of motion

(a)

(b)

Centripetal Acceleration, final

- The magnitude of the centripetal acceleration is given by

$$
a_{c}=\frac{v^{2}}{r}
$$

- This direction is toward the center of the circle

Centripetal Acceleration and Angular Velocity

- The angular velocity and the linear velocity are related ($\mathrm{v}=\omega \mathrm{w}$)
- The centripetal acceleration can also be related to the angular velocity

$$
a_{c}=\omega^{2} r
$$

Total Acceleration

- The tangential component of the acceleration is due to changing speed
- The centripetal component of the acceleration is due to changing direction
- Total acceleration can be found from these components

$$
a=\sqrt{a_{t}^{2}+a_{c}^{2}}
$$

Vector Nature of Angular Quantities

- Angular displacement, velocity and acceleration are all vector quantities
- Direction can be more completely defined by using the right hand rule
- Grasp the axis of rotation with your right hand
- Wrap your fingers in the direction of rotation
- Your thumb points in the direction of ω

Velocity Directions, Example

- In a, the disk rotates
clockwise, the velocity is into the page
- In b, the disk rotates counterclockwise, the velocity is out of the page

(a)

(b)

Acceleration Directions

- If the angular acceleration and the angular velocity are in the same direction, the angular speed will increase with time
- If the angular acceleration and the angular velocity are in opposite directions, the angular speed will decrease with time

Forces Causing Centripetal Acceleration

- Newton's Second Law says that the centripetal acceleration is accompanied by a force
$-F_{C}=m a_{c}$
$-F_{C}$ stands for any force that keeps an object following a circular path
- Tension in a string
- Gravity
- Force of friction

Banked Curves

- A component of the normal force adds to the frictional force to allow
higher speeds

$$
\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}
$$

$$
\text { or } \mathrm{a}_{\mathrm{c}}=\mathrm{g} \tan \theta
$$

