



## More About Radians

- Comparing degrees and radians

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}
$$

- Converting from degrees to radians

$$
\left.\theta[\mathrm{rad}]=\frac{\pi}{180^{\circ}} \theta \text { [degrees }\right]
$$

## Angular Displacement

- Axis of rotation is the center of the disk
- Need a fixed reference line
- During time $t$, the reference line moves through angle $\theta$

(a)

(b) ${ }^{2003}$ Thomson - Brooks Cole University of Maryland


## Rigid Body

- Every point on the object undergoes circular motion about the point O
- All parts of the object of the body rotate through the same angle during the same time
- The object is considered to be a rigid body
- This means that each part of the body is fixed in position relative to all other parts of the body



## Angular Displacement, cont.

- The angular displacement is defined as the angle the object rotates through during some time interval
- 

$$
\Delta \theta=\theta_{\mathrm{f}}-\theta_{\mathrm{i}}
$$

- The unit of angular displacement is the radian
- Each point on the object undergoes the same angular displacement


## Average Angular Speed

- The average angular speed, $\omega$, of a rotating rigid object is the ratio of the angular displacement to the time interval

$$
\omega_{\mathrm{av}}=\frac{\theta_{\mathrm{f}}-\theta_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}=\frac{\Delta \theta}{\Delta \mathrm{t}}
$$



## Angular Speed, cont.

- The instantaneous angular speed is defined as the limit of the average speed as the time interval approaches zero
- Units of angular speed are radians/sec - rad/s
- Speed will be positive if $\theta$ is increasing (counterclockwise)
- Speed will be negative if $\theta$ is decreasing (clockwise)
?
A lady bug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a complete revolution once each second. The gentleman bug's angular speed is

25\% 25\% 25\% 25\%

1. Half the lady bug's
2. The same as the lady bug's
3. Twice the lady bug's
4. Impossible to determine


## Average Angular Acceleration

- The average angular acceleration $\alpha$ of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change:

$$
\alpha_{\mathrm{av}}=\frac{\omega_{\mathrm{f}}-\omega_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}=\frac{\Delta \omega}{\Delta \mathrm{t}}
$$

## Angular Acceleration, cont

- Units of angular acceleration are rad/s ${ }^{2}$
- Positive angular accelerations are in the counterclockwise direction and negative accelerations are in the clockwise direction
- When a rigid object rotates about a fixed axis, every portion of the object has the same angular speed and the same angular acceleration


## Angular Acceleration, final

- The sign of the acceleration does not have to be the same as the sign of the angular speed
- The instantaneous angular acceleration is defined as the limit of the average acceleration as the time interval approaches zero



## Relationship Between Angular and Linear Quantities

- Displacements

$$
\mathbf{s}=\theta \mathrm{r}
$$

- Speeds
$\mathrm{v}_{\mathrm{t}}=\omega \mathrm{r}$
- Accelerations
$a_{t}=\alpha r$ units of distance
- The subscript " $t$ " refers to tangential rotating object has the same angular motion
- Every point on the rotating object does not have the same linear motion
- $s$ is a displacement with
?
A lady bug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a complete revolution once each second. The gentleman bug's tangential speed is
25\% 25\% 25\% 25\%

1. Half the lady bug's
2. The same as the lady bug's
3. Twice the lady bug's
4. Impossible to determine



| 1 | 2 | 3 | 4 | 5 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |

