

Momentum

- From before:
- $F \Delta t$ is called Impulse, I
$\vec{I}=\vec{F} \Delta t$
- $m v$ is called momentum
- Momentum usually denoted as $p \quad \vec{p}=m \vec{V}$

$$
\vec{I}=\Delta \vec{p} \quad \vec{F} \Delta t=\Delta \vec{p}
$$

- Note: This is really just N2 written in a different way
- Momentum is conserved in collisions

$$
\vec{p}_{\text {Total }, i}=\vec{p}_{\text {Total }, f}
$$

Glancing Collisions

- For a general collision of two objects in threedimensional space, the conservation of momentum principle implies that the total momentum of the system in each direction is conserved
- Use subscripts for identifying the object, initial and final velocities, and components

$$
\begin{aligned}
& m_{1} v_{\text {iix }}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \text { and } \\
& m_{1} v_{\text {1iy }}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

Glancing Collisions

-mu-n

- The "after" velocities have x and y components
- Momentum is conserved in the x direction and in the y direction
- Apply conservation of momentum separately to each direction

Problem Solving for 2-D Collisions

- Coordinates: Set up coordinate axes and define your velocities with respect to these axes
- It is convenient to choose the x - or y - axis to coincide with one of the initial velocities
- Draw: In your sketch, draw and label all the velocities and masses

Problem Solving for 2-D Collisions, 2

- Conservation of Momentum: Write expressions for the x and y components of the momentum of each object before and after the collision
- Write expressions for the total momentum before and after the collision in the x direction and in the y-direction

Example Problem 6.45

- A billiard ball moving at $5.00 \mathrm{~m} / \mathrm{s}$ strikes a stationary ball of the same mass. After the collision, the first ball moves at $4.33 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with respect to the original line of motion.
- Find the velocity (magnitude and direction) of the second ball after the collision.

