

Front Page of Exam

$$
\begin{array}{ll}
\bar{v}=\frac{\Delta x}{\Delta t} & v=v_{0}+a t \\
\bar{a}=\frac{\Delta v}{\Delta t} & x=\frac{1}{2} a t^{2} \\
g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
\Delta x=v_{0} t+\frac{1}{2} a t^{2} \\
v^{2}=v_{0}^{2}+2 a \Delta x
\end{array}
$$

- Newton's Laws
- 1) An object moves with a velocity that is constant in magnitude and direction, unless acted on by a nonzero net force.
- 2) The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.
- 3) If object 1 and object 2 interact, the force exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force exerted by object 2 on object 1 .
D. Roberts

Exam Topics

- Dimensional Analysis
- Motion
- Position
- Velocity
- Acceleration
- Motion Graphs in 1-D
- Equations of Motion in 1-D
- Newton's Laws of Motion
- Gravity as a force
- Free-body diagrams (force diagrams)
- Anything covered in tutorial

Assumptions of Projectile Motion

- We may ignore air friction
- We may ignore the rotation of the earth
- With these assumptions, an object in projectile motion will follow a parabolic path

Rules of Projectile Motion

- The x - and y-directions of motion are completely independent of each other
- The x-direction is uniform motion
- $a_{x}=0$
- The y-direction is free fall
$-a_{y}=-g$
- The initial velocity can be broken down into its x - and y components

$$
\mathrm{v}_{\mathrm{Ox}}=\mathrm{v}_{\mathrm{O}} \cos \theta_{\mathrm{O}} \quad \mathrm{v}_{\mathrm{Oy}}=\mathrm{v}_{\mathrm{O}} \sin \theta_{\mathrm{O}}
$$

Some Details About the Rules

- x-direction
$-a_{x}=0$
$-\mathrm{v}_{\mathrm{xo}}=\mathrm{v}_{\mathrm{o}} \cos \theta_{\mathrm{o}}=\mathrm{v}_{\mathrm{x}}=$ constant
$-x=v_{x 0}{ }^{t}$
- This is the only operative equation in the x-direction since there is uniform velocity in that direction

More Details About the Rules

- y-direction
$-\mathrm{v}_{\mathrm{yo}}=\mathrm{v}_{\mathrm{o}} \sin \theta_{\mathrm{o}}$
- free fall problem
- $\mathrm{a}=-\mathrm{g}$
- take the positive direction as upward
- uniformly accelerated motion, so the motion equations all hold

Problem-Solving Strategy

- Select a coordinate system and sketch the path of the projectile
- Include initial and final positions, velocities, and accelerations
- Resolve the initial velocity into x - and y components
- Treat the horizontal and vertical motions independently

Problem-Solving Strategy, cont

- Follow the techniques for solving problems with constant velocity to analyze the horizontal motion of the projectile
- Follow the techniques for solving problems with constant acceleration to analyze the vertical motion of the projectile

Some Variations of Projectile Motion

- An object may be fired horizontally
- The initial velocity is all in the x-direction
- $\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{\mathrm{x}}$ and $\mathrm{v}_{\mathrm{y}}=0$
- All the general rules of projectile motion apply

