

■ Final Exam

- Friday, 12/17, 8-12, Phys1412
- Cumulative
- -200 points
- About 50% on material since Exam 2
- Q&A Session
 - Wednesday, 12/15, 2:00-3:30 PM, Physics 1412
- Course Center Office hours
 - Tuesday 12/14, 12:00-2:00 PM
 - Thursday 12/16 12:00-2:00 PM

12/17/10 Physics 121 **2**

Results of Exam Questions

	#1	#2	#3	#4	#5
Ex 1	56%	58%	38%	75%	79%
Ex 1 (MU)	74%	45%	70%	40%	45%
Ex 2	63%	57%	84%	53%	68%
Ex 2 (MU)	65%	46%	63%	57%	50%

12/17/10 Physics 121 **3**

Results of Quiz Questions

	#1	#2	#3	#4
Q1	42%	12%	57%	
Q2	96%	96%	85%	
Q3	68%	69%	93%	63%
Q4	55%	97%	87%	
Q5	90%/68%	95%	66%	60%
Q6	23%/64%	74%	82%	46%
Q7	77%	67%	24%	
Q8	61%	18%	46%	
Q9	96%	61%	25%	
Q10	94%	14%	14%	19%
12/17/10		Physics 121		4

Content Summary

- Principles of Motion: The Newtonian Synthesis
 - Description of Motion (Kinematics)
 - Causes of Motion: Newton's Laws (Dynamics)
 - Forces
- Extension and Analysis of Principles of Motion
 - Center of Mass
 - Momentum and Impulse
 - Energy and Work
 - Rotational Motion
- Applications of Principles of Motion
 - Properties of Fluids: Pressure and Flow
 - Heat and Temperature: Thermal Energy

12/17/10 Physics 121

Knowledge Games

- Shopping for ideas
- Choosing foothold ideas
- Reconciling intuition
- Elaboration / Implication
- Seeking consistency
- Sense making

5

12/17/10

Physics 121

•

Description of Motion

- Coordinate systems
- Vectors
- Velocity and Acceleration

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t} \quad \langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$$

■ Constructing graphs

12/17/10 Physics 121 **7**

Causes of Motion: Newton's Laws

- N0: Objects only respond to forces acting on themselves, at the time the forces are exerted.
- N1: Objects change their velocity (perhaps =0) only if they are acted on by unbalanced forces.
- N2: Each object responds to the forces it feels by changing its velocity according to $\vec{a} = \vec{F}^{net} / m$
- N3: When two objects touch, they exert equal and opposite forces on each other. $\vec{F}_{A\to B} = -\vec{F}_{B\to A}$

12/17/10 Physics 121

Kinds of forces

■ There are 2 classes of forces

- Touching

» Normal — N

(perpendicular to surface and pressing in)

» Tension — T

(pulling out of the surface)

» Friction — f

(parallel to surface opposing sliding)

- Non-touching

» Magnetic — Fmag

» Electric — Felec 12/17/10

Physics 121

9

Properties of Forces

- *Normal* adjust to oppose compression (like a spring)
- *Tension* t. force vs. t. scalar, analysis of the chain

$$T = k \Delta l$$

■ Friction — opposes sliding of surfaces over one another

$$\begin{split} f_{A \to B} &\leq f_{A \to B}^{\text{max}} = \mu_{AB}^{\text{static}} N_{A \to B} & \text{not sliding} \\ f_{A \to B} &= \mu_{AB}^{\text{kinetic}} N_{A \to B} & \text{sliding} \\ \mu_{AB}^{\text{kinetic}} &\leq \mu_{AB}^{\text{static}} \end{split}$$

■ Gravity — towards the center of the earth,

proportional to mass

12/17/10

Physics 121

Momentum and Impulse

- We can rewrite $\vec{a} = \vec{F}^{net} / m$ to focus on what a moving object "carries".
- Define momentum and impulse

$$\vec{p} = m\vec{v} \qquad \vec{\mathcal{I}} = \vec{F}^{net} \ \Delta t$$

■ Rewrite N2 $\vec{\mathcal{I}} = \Delta \vec{p}$

■ In a system, if the external forces cancel, the total momentum of the system is conserved.

12/17/10 Physics 121 **11**

Energy and Work

- We can rewrite N2 to focus on the part of the forces that change the object's <u>speed</u>.
- Define Kinetic Energy and Work

$$KE = \frac{1}{2}mv^2$$
 Work = $\vec{F}^{net} \cdot \Delta \vec{r}$

■ Rewrite N2 by taking the dot product with the displacement (to select part of force acting along the motion)

$$\Delta \left(\frac{1}{2} m v^2 \right) = \vec{F}^{net} \cdot \Delta \vec{r}$$

12/17/10 Physics 121 **12**

Potential Energy

- For some kinds of forces (gravity, springs) the work done by that force can be brought to the other side and treated as a kind of energy. {Conservative forces}
- For some kinds of forces (friction, air resistance) you can't do this. {Non-conservative forces}

$$\begin{split} \Delta \left(\frac{1}{2} m v^2 + U \right) &= \vec{F}_{non-cons}^{net} \cdot \Delta \vec{r} \\ U_{grav} &= mgh \qquad U_{spring} = \frac{1}{2} k (\Delta x)^2 \end{split}$$

■ If a system only constains conservative forces, mechanical energy (KE + PE) is conserved.

12/17/10 Physics 121 13

Conservation Equations

■ Momentum

$$m_{1}\vec{v}_{1}^{i} + m_{2}\vec{v}_{2}^{i} = m_{1}\vec{v}_{1}^{f} + m_{2}\vec{v}_{2}^{f}$$
$$\Delta(m_{1}\vec{v}_{1}) = -\Delta(m_{2}\vec{v}_{2})$$

■ Energy

$$\frac{1}{2}mv_i^2 + U(\vec{r}_i) = \frac{1}{2}mv_f^2 + U(\vec{r}_f)$$
$$\Delta(\frac{1}{2}mv^2 + U(\vec{r})) = 0$$

12/17/10 Physics 121 **14**

Center of Mass

- Extend our considerations from point objects to extended rigid objects.
- Identify CM of object.

$$\vec{R} = \sum_{i} \frac{m_i}{M} \vec{r}_i$$

- An object's CM respond to forces as if all the forces were applied to that point.
- An object's orientation around its CM has to be described by extensions of Newton's laws.

12/17/10 Physics 121 15

Rotational Motion

■ Description of rotations (kinematics)

 θ (radians)

$$\langle \omega \rangle = \frac{\Delta \theta}{\Delta t}$$

 $\langle \alpha \rangle = \frac{\Delta \omega}{\Delta t}$

$$\langle \alpha \rangle = \frac{\Delta \omega}{\Delta t}$$

$$\Delta \theta = \frac{\Delta s}{R} \quad \text{(radians)}$$

$$\omega = \frac{v}{R}$$
 Relation to linear measures

$$\alpha = \frac{a}{R}$$

12/17/10

Physics 121

16

8

Physics 121

Circular motion

- Uniform circular motion
 - Radial acceleration
 - Centripetal force

$$a_{radial} = \frac{v^2}{R}$$
$$F_{radial} = \frac{mv^2}{R}$$

Accelerated circular motion

- Tangential/angular accel.
- N2 for rotations

$$a_{tangential} = \frac{F_{tangential}^{net}}{m}$$

 $\alpha = \frac{a_{tangential}}{R}$

12/17/10 Physics 121 **17**

Rotation of Objects

- Moment of Inertia $I = \sum_{i} m_i r_i^2$
- Torque $\vec{\tau} = \vec{R} \times \vec{F}$
- Conditions for Statics $\vec{F}^{net} = 0$ $\vec{\tau}^{net} = 0$
- Rotational Dynamics $\alpha = \frac{\tau^{net}}{I}$
- Rotational Energy $RE = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \frac{1}{2} I \omega^{2}$ Physics 121 18

Balance Conditions for Extended Objects (in 2D)

$$\begin{split} F_{up} &= F_{down} \\ F_{left} &= F_{right} \\ \tau_{clockwise} &= \tau_{counter-clockwise} \end{split}$$

12/17/10 Physics 121 **19**

Vector Products

■ Dot Product (a scalar)

 Picks out the pieces of two vectors in the same direction and multiplies them.

$$\vec{A} \cdot \vec{B} = AB\cos\theta = A_x B_x + A_y B_y$$

Useful for finding Work. (Why?)

- Cross Product (a vector)
 - Picks out the pieces of two vectors in perpendicular directions and multiplies them

$$\left| \vec{A} \times \vec{B} \right| = AB \sin \theta = A_x B_y - A_y B_x$$

12/17/10

Physics 121

$$\begin{array}{c} \vec{A} \times \vec{B} \otimes \underbrace{\vec{A} \cdot \vec{A} \sin \theta}_{\vec{B} \times \vec{A}} \otimes \underbrace{\vec{B} \cdot \vec{A} \sin \theta}_{\vec{B}} \end{array}$$

Useful for finding Torque. (Why?)

Static Properties of fluids

■ Pressure

$$\vec{F} = p\vec{A}$$

■ Pressure under gravity (incompressible fluid)

$$p = p_0 + \rho_{fluid} g d$$

■ Principles

- Archimedes' principle

21

Dynamic Properties of Fluid Flow

■ Incompressible fluid: conservation of flow.

$$Q = Av = constant$$

■ Constant flow through a pipe (HP eq.)

$$\Delta p = ZQ$$

$$Z = \frac{8\pi\mu L}{A^2}$$

Physics 121

22

Heat and Temperature

- Temperature:
 - a measure of thermal energy density
 - 0-th Law of Thermodynamics
- Heat energy transfer $Q_1 = -Q_2$ between two objects $Q = C\Delta T = mc\Delta T$

23

Heat Flow

■ Fourier's Law

$$\Delta T = T_H - T_C$$

 Φ = heat flow (energy/sec)

$$\Delta T = Z\Phi$$

$$Z = \frac{1}{k} \frac{L}{A}$$

 $T_H > T_C$

12/17/10 Physics 121 **24**