
■ Theme Music: Manuel de Falla

Ritual Dance of Fire

played by Ruth Laredo

■ Cartoon: Jeff Mallett

Frazz.

Surveys

- Campus evaluation (login at upper right)
 - <u>https://www.CourseEvalUM.umd.edu</u>(or from BlackBoard)
- In tutorial next week
 - Post-instruction concept survey (5 pts)
- On line
 - Post-instruction attitude survey (5 pts)

http://perg-surveys.physics.umd.edu/MPEX2post.php

Foothold ideas: 1

- Temperature is a measure of how hot or cold something is. (We have a natural physical sense of hot and cold.)
- When two objects are left in contact for long enough they come to the same temperature.
- When two objects of the same material but different temperatures are put together they reach an average, weighted by the fraction of the total mass.
- The mechanism responsible for the above rule is that the same thermal energy is transferred from one object to the other: Q proportional to $m\Delta T$.

4

Thermal Energy is NOT Temperature

- Even if the masses are the same, the temperature does not wind up halfway between.
- Each kind of material translates thermal energy into temperature in its own way.

$$m_1 c_1 \Delta T_1 = -m_2 c_2 \Delta T_2$$

Specific Heat and Heat Capacity

■ The amount of thermal energy needed to produce one degree of temperature change is an object is called its <u>heat capacity</u>.

$$Q = C\Delta T$$

■ The amount of thermal energy per unit mass needed to produce one degree of temperature change in an object is called its <u>specific heat</u>.

$$C = mc$$

Scales and Units

- 1 cal = the amount of thermal energy needed to change the temperature of 1 gm of water by 1 degree C (from 14.5° to 15.5°) (by definition)
- \blacksquare 1 Cal = 1000 cal
- \blacksquare 1 Cal = 4184 J

Reinterpreting Our Results

■ When two objects at different temperature are put together, thermal energy flows from the hotter body to the colder body until their temperatures are the same.

(0th Law)

$$Q = m_1 c_1 \Delta T_1 = m_1 c_1 (T_f - T_1^i)$$

$$-Q = m_2 c_2 \Delta T_2 = m_2 c_2 (T_f - T_2^i)$$

$$m_1 c_1 (T_f - T_1^i) = -m_2 c_2 (T_f - T_2^i)$$

$$m_1 c_1 (T_f - T_1) = m_2 c_2 (T_2 - T_f)$$

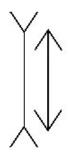
$$T_f = \frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2}$$

$$T_f = \left(\frac{m_1 c_1}{m_1 c_1 + m_2 c_2}\right) T_1 + \left(\frac{m_2 c_2}{m_1 c_1 + m_2 c_2}\right) T_2$$

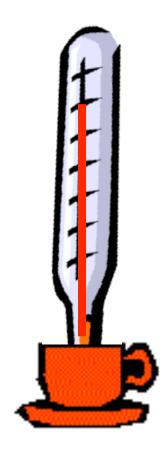
Foothold ideas: 2

- When two objects of <u>different</u> materials and different temperatures are put together they come to a common temperature, but it is not obtained by the simple rule.
- Each object translates thermal energy into temperature in its own way. This is specified by a density-like quantity, *c*, the specific heat.
- The heat capacity of an object is C = mc.
- When two objects of different material and different temperatures are put together they reach an average, weighted by the fraction of the total heat capacity.
- When heat is absorbed or emitted by an object $Q = \pm mc\Delta T$ 12/6/10 Physics 121 10

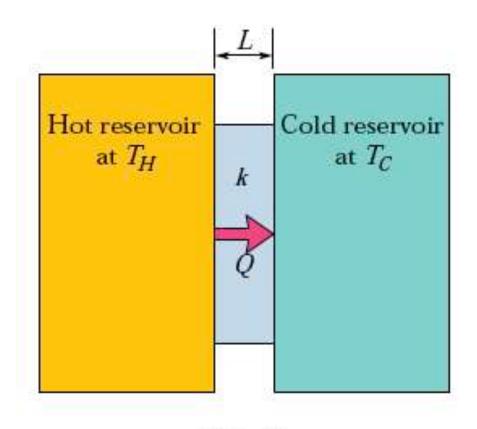
Real-World Intuition 1:


Reconsidered

– If we have a cup of hot water and a cup of cold water and we put them aside for a while, what will happen to them?

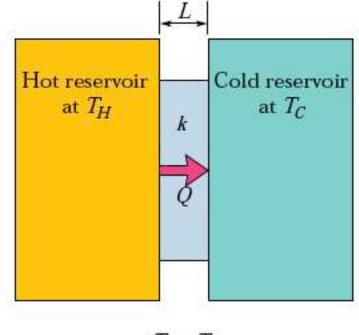


– If you touch the cloth part of your chair and the metal part, which feels warmer?



ILD 7

Heat Flow by Conduction


- Simplest case (again)
 - Hot block at $T_{\rm H}$
 - Cold block at $T_{\rm C}$
 - Connecting block
 that carries
 ("conducts")
 thermal energy
 from the hot block
 to the cold.

 $T_H > T_C$

Creating an equation

- Φ = Flow
 = heat energy/sec
 [Φ] = Joules/s = Watts
- What drives the flow?
- How does the rate of flow depend on the property of the connecting block?

 $T_H > T_C$

The Heat Flow Equation

$$\Delta T = Z\Phi$$

- We expect the flow to
 - Be less for a longer block (L)
 - − Be more for a wider block (A)

$$Z = \rho \frac{L}{A}$$

 $\rho =$ thermal resistivity – a property of the kind of substance the block is made of

A more standard form

■ We have written the heat flow equation to have it match the HP equation. It is more standardly written this way: **Thermal**

Heat flow per unit area

$$k = \frac{1}{\rho}$$

conductance

■ The equation then becomes

$$\Delta T = Z\Phi = \frac{\rho L}{A}\Phi = \left(\frac{L}{k}\right)\left(\frac{\Phi}{A}\right)$$

$$\Delta T = R\phi$$
Physics 121 Thermal resistance (R-value)

12/6/10

16

Some thermal conductances

Material	k (W/m-C)	Material	k (W/m-C)
Steel	12-45	Wood	0.4
Aluminum	200	Insulation	0.04
Copper	380	Air	0.025

Physics 121 17