

Outline

- Quiz 9: Torque and rotational energy
- Fluids
 - Pressure
 - Fluids under gravity
- Archimedes' Principle

11/22/10 Physics 121

Pressure

■ What forces are exerted on the box imbedded in the fluid?

Prof. E. F. Redish

2

Drawing on experience

5

- What happens when an object is immersed in a fluid?
- Examples?

Variation of Pressure with Depth*

$$F^{down} = F^{up}$$

$$mg + p_0 A = pA$$

$$\rho Vg + p_0 A = pA$$

$$\rho A dg + p_0 A = pA$$

d Î

Archimedes' Principle: 1

- What happens when an object is immersed in a fluid?
- The pressure at the bottom is greater than the pressure at the top so overall the fluid pushes up.

Archimedes' Principle: 2

$$F^{net} = p_2 A - p_1 A$$
 $p_1 = p_0 + \rho g d_1$
 $p_2 = p_0 + \rho g d_2$
 $F^{net} = (p_2 - p_1) A$
 $F^{net} = (p_0 + \rho g d_2 - p_0 - \rho g d_1) A$
 $F^{net} = \rho g (d_2 - d_1) A = \rho V g = mg$

The buoyant (upward) force = the weight of the fluid displaced.

Making sense of AP

■ Consider the forces on a bag of water the same shape as an immersed object.

■ The BF is equal to the weight of the water displaced - that's what the surrounding water can hold up!

11

Prof. E. F. Redish 3 Physics 121 11/22/10

Measuring Pressure: Units Pascal (N/m²) mm of millibar Hg 10^{-5} 7.5x10⁻⁵ 0.01 1.5x10-4 Pascal (N/m^2) 1000 760 14.7 atm mm of Hg millibar lb/in2 1 14 Physics 121

Prof. E. F. Redish