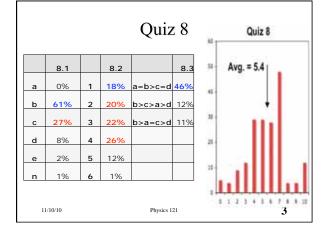

Phys 121 11/10/10


Outline

- Go over Quiz 8
- Extended objects: Center of Mass
- Torque: the balance rule
- Torque as a vector

11/10/10

Physics 121

2

How can we get away with it?

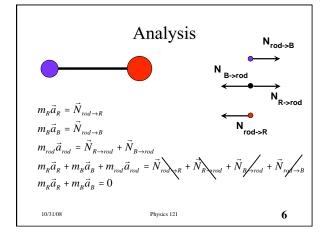
- Up to now we have considered objects that were small enough that we could ignore their size.
- How can we get away with it?
- Consider extended objects. Start with the simplest example.

11/10/10

121

4

A Simple Extended Object



- In order to understand what's happening, let's take the simplest case we can imagine of an extended object:
 - Two small masses connected by a rigid (nearly massless) rod sliding on a frictionless table.
 - If they were considered as a single object, they should move on a straight line at a constant speed. (No external forces.)

10/31/0

Physics 121

s 121 **5**

3

The Center of Mass

$$\begin{split} m_{\scriptscriptstyle R} \vec{a}_{\scriptscriptstyle R} + m_{\scriptscriptstyle B} \vec{a}_{\scriptscriptstyle B} &= 0 \\ m_{\scriptscriptstyle R} \frac{\Delta \vec{v}_{\scriptscriptstyle R}}{\Delta t} + m_{\scriptscriptstyle B} \frac{\Delta \vec{v}_{\scriptscriptstyle B}}{\Delta t} &= 0 \end{split}$$

$$\frac{\Delta(m_R \vec{v}_R + m_B \vec{v}_B)}{\Delta t} = 0$$

$$m_R \vec{v}_R + m_B \vec{v}_B = \text{constant}$$

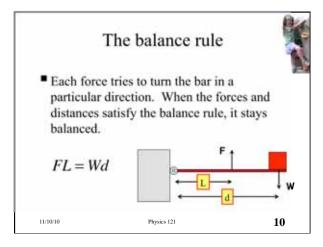
$$\begin{split} m_{g}\vec{v}_{g} + m_{g}\vec{v}_{g} &= m_{g}\frac{\Delta\vec{v}_{g}}{\Delta t} + m_{g}\frac{\Delta\vec{v}_{g}}{\Delta t} \\ m_{g}\vec{v}_{g} + m_{g}\vec{v}_{g} &= M\frac{\Delta\vec{R}}{\Delta t} \end{split}$$

7

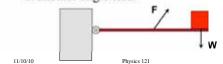
Properties of the CM

The center of mass (CM) of an object is the average position of its component masses, weighted by the fraction of the mass the component contains.

$$\vec{R} = \frac{m_1}{M}\vec{r_1} + \frac{m_2}{M}\vec{r_2} + \frac{m_3}{M}\vec{r_3} + ... = \sum_{i=1}^{n} \frac{m_i}{M}\vec{r_i}$$

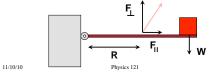

 The center of mass of an object moves as if it were a point mass with only the external forces on the components acting on it. 10/31/08 Physics 121

Newton's Laws for an Extended Object


- For an extended object, the Newton's laws we have described so far apply to the center of mass (CM).
- Even if the CM is at rest or moving at a constant velocity - the object can still rotate around the CM,
- Motion can be created for extended objects even if all forces are balanced if the balanced forces are applied at different points.

Phys 121 11/10/10

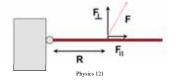
Rotational Effect of Forces: Relevant Factors


- Experimentally, the effect is proportional to the distance from the center.
- The angle at which the force is applied clearly makes a difference with perpendicular being most effective, at another angle less.

11

Rotational Effect of Forces: Torque

- We can figure out a measure of effectiveness by doing a component decomposition of the force vector:
- Only the perpendicular component has a rotational effect.



12

Definition of Torque

- "Torque" measures the effectiveness of the rotational tendency produced by a force.
- In order for an object not to rotate the torques tending to rotate it opposite ways must balance. $\tau = F_1 R = FR \sin \theta$

13

Definition of Torque

Define a quantity that measures the effectiveness of the rotational tendency produced by a force.

$$\tau = F_{\perp}R = FR\sin\theta$$

$$F_{\perp} \downarrow F_{\parallel}$$

$$R \rightarrow F_{\parallel}$$

1/10/10

14

Torque as a vector

- Torque involves a position vector.
 - This vector is drawn from a reference point to the point at which the force is applied.
- The torque is defined to point in the direction of the axis through the reference point that it tries to rotate

$$\vec{\tau} = \vec{R} \times \vec{F}$$

the object about.

11/10/10

Physics 12

15

Phys 121 11/10/10

The Cross Product

- The cross product is a way to multiply two vectors to get a vector – one that is perpendicular to both the vectors you are multiplying.
- (Remember that the dot product is a way to multiply two vectors to get a scalar – a number without any direction.)

11/10/10 Physics 121 **16**

The Principles of Balance

- For an object to be stationary
 - if it's CM doesn't move, the sum of all forces acting on it must balance.

$$\vec{F}^{net} = 0 \rightarrow F^{up} = F^{down}$$

$$F^{left} = F^{right}$$

 if it doesn't rotate about a particular point, the sum of all torques around that point must balance

$$\tau^{net} = 0 \, \boldsymbol{\rightarrow} \, \, \tau^{clockwise} = \tau^{counter\text{-}clockwise}$$

11/10/10

Physics 121

22