■ Theme Music: Depeche Mode

Get the Balance Right

■ Cartoon: Bill Watterson Calvin & Hobbes

Outline

- Quiz 8: Circular motion
- Rotational Kinematics
 - angles
 - angular velocity
- Rotational Effect of Forces
 - Torque
 - examples

Rotational Effect of Forces: Relevant Factors

- How much force is needed to hold up a weight?
- The distance from the point of rotation clearly makes a difference with farther being more effective, nearer less.

The balance rule

■ Each force tries to turn the bar in a particular direction. When the forces and distances satisfy the balance rule, it stays balanced.

8

Example: The Scaffold

- Forces must balance for the CM not to move.
- Torques must balance for the object not to rotate about the CM.

$$au_{clockwise} = au_{counter-clockwise}$$
 $F_{up} = F_{down}$ $F_{left} = F_{right}$

Does it matter is you choose a different reference point?

Rotational Effect of Forces: Relevant Factors

- Experimentally, the effect is proportional to the distance from the center.
- The angle at which the force is applied clearly makes a difference with perpendicular being most effective, at another angle less.

11/8/10

Rotational Effect of Forces: Torque

- We can figure out a measure of effectiveness by doing a component decomposition of the force vector:
- Only the perpendicular component has a rotational effect.

12

Definition of Torque

- "Torque" measures the effectiveness of the rotational tendency produced by a force.
- In order for an object not to rotate the torques tending to rotate it opposite ways must balance.

 $\tau = F_{\perp}R = FR\sin\theta$

The Cross Product

■ Just as when we defined the dot product in terms of relevant components, we can define a new product, the cross product, which takes 2 vectors and gives back a new vector.

11/8/10

■ We take the magnitude area = A of the cross produce = area and the direction of the cross-product = perpendicular to the area spanned by the two vectors (selected by a RH rule).

Rotation as a Vector

- Torque tends to produce rotation and the direction of rotation matters.
- Choose the direction associated with a rotation as pointing along the axis of rotation with a right hand rule to choose up or down.
- (RH Rule: Fingers curl around in direction of rotation and thumb points in the direction of the vector.)

$$\vec{\tau} = \vec{R} \times \vec{F}$$