Physics 121

11/5/10

Outline

- Recap of forces in circular motion
- Rotational Kinematics
 - angles (radians)
 - angular velocity and angular acceleration
 - trig for large angles
- Thinking about balance: The Rotational Effect of Forces

11/5/10 Physics 121 **2**

Prof. E. F. Redish

Uniform Circular Motion:

$$\vec{a} = -\frac{v^2}{R}\hat{r} \qquad \text{in order for the object to move} \\ \text{in a circle with constant speed.}$$

$$\frac{\vec{F}^{net}}{m} = -\frac{v^2}{R}\hat{r}$$
 Therefore, to do this, we need a net force.

$$\vec{F}^{net} = -\frac{mv^2}{R}\hat{r}$$

Radians

■ The radian is an angle measure defined as the ratio of the arc length of the circle spanned by the angle to the radius of the circle.

4

$$\theta = \frac{L}{R} \quad \text{(in radians)}$$

$$\theta_{\text{whole circle}} = \frac{2\pi R}{R} = 2\pi$$

$$\Rightarrow \quad \frac{\theta_{\text{rad}}}{\theta_{\text{deg}}} = \frac{2\pi}{360}$$

5

6

Rotational Kinematics: Polar Description of Motion

- - Angle (radians) θ
 - Angular velocity ω
 - Angular acceleration α

Uniform motion: $\Delta \theta = \omega_0 \Delta t$

■ Describing the angular position of an object.

Prof. E. F. Redish