Physics 121 11/3/10

Outline

- Go over Quiz 7
- Uniform Circular Motion
- Circular Motion: Polar description
 - Angles
 - Angular velocity
 - Angular acceleration
- Appendix: What if I like calculus better than geometry?

11/3/10 Physics 121 **2**

Quiz 7				Quiz 7
	7.1	7.2	7.3	10
а	31%	67%	0%	Avg. 5.4
b	1%	10%	1%	10 -
С	28%	1%	1%	10
d	77%	5%	72%	20 -
е	19%	10%	24%	
f	2%			10-

Physics 121 11/3/10

Uniform Circular Motion: Acceleration vector

 $a = \frac{v^2}{R}$ pointing in to center

 \vec{r} = position vector

 $\frac{\vec{r}}{R} = \hat{r} = \text{unit vector in direction of position vector}$

$$\vec{a} = -\frac{v^2}{R}\hat{r}$$

1/3/10

9

Uniform Circular Motion: Forces

Physics 121

- Newton 1 says an object with no net force acting on it moves in a straight line with a constant speed.
- So if an object moves in a circle at a constant speed, there must be a net force on it.

 (The velocity is changing direction, so there is an acceleration.)
- How much force is needed to cause an object to move in a circle at a constant speed?

11/3/10

Physics 121

10

Uniform Circular Motion: Forces

$$\vec{a} = \frac{\vec{F}^{net}}{m}$$
 always
$$\vec{a} = -\frac{v^2}{R}\hat{r}$$
 in order for the object to move in a circle with constant speed.
$$\frac{\vec{F}^{net}}{m} = -\frac{v^2}{R}\hat{r}$$
 Therefore, to do this, we need a net force.
$$\vec{F}^{net} = -\frac{mv^2}{R}\hat{r}$$
 A(n inward) radial net force is needed to maintain circular motion.

Rotational Kinematics: Polar Description of Motion Describing the angular position of an object. Angle (radians) θ Angular velocity ω Angular acceleration α $\theta \text{ (in radians)} = \frac{2\pi}{360}\theta \text{ (in degrees)}$ $\langle \omega \rangle = \frac{\Delta \theta}{\Delta t} \qquad \langle \alpha \rangle = \frac{\Delta \omega}{\Delta t}$ Uniform motion: $\Delta \theta = \omega_0 \Delta t$

Uniform Circular Motion

■ In uniform circular motion, the speed is constant. This means the angle grows at a constant rate.

$$\langle \omega \rangle = \omega_0 = \frac{\Delta \theta}{\Delta t}$$
$$\Delta \theta = \omega_0 \ \Delta t$$

$$\theta - \theta_o = \omega_0(t - t_0)$$

$$\theta = \theta_0 + \omega_0(t - t_0)$$

11/3/10

14

Physics 121

Physics 121 11/3/10

