■ Theme Music: by Joni Mitchell*

Circle Game

■ Cartoon: Bill Watterson Calvin & Hobbes

*playing the original cover by Tom Rush

Outline

- Quiz 7: Energy
- ILD 5: Circular motion
- Circular Motion
 - position
 - velocity
 - acceleration
 - equations
 - force

Circular Motion

- We've focused so far on motion along a line (1D motions) or 2D where the motions along two perpendicular directions are each independent 1D motions.
- Let's consider an example (the simplest one) in which the only change in a velocity is its direction.
- Uniform circular motion
 - = motion in a circle at a constant speed.

ILD 5

Circular Motion:
Checking for coherence
and reconciling

Uniform Circular Motion: Position

Uniform Circular Motion: Velocity

Physics 121

Uniform Circular Motion: Acceleration

$$\left\langle \vec{a} \right\rangle = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a} = \frac{dv}{dt}$$

Uniform Circular Motion:

Geometry

Uniform Circular Motion: Equation

Similar triangles imply

$$\frac{v \, \Delta t}{R} = \frac{a \, \Delta t}{v}$$

$$\frac{a}{v} = \frac{v}{R}$$

$$a = \frac{v^2}{R}$$

Uniform Circular Motion: Acceleration vector

$$a = \frac{v^2}{R}$$
 pointing in to center

 \vec{r} = position vector

$$\frac{\vec{r}}{R} = \hat{r} = \text{unit vector in direction of position vector}$$

$$\vec{a} = -\frac{v^2}{R}\hat{r}$$

Uniform Circular Motion: Forces

- Newton 1 says an object with no net force acting on it moves in a straight line with a constant speed.
- So if an object moves in a circle at a constant speed, there must be a net force on it.
 (The velocity is changing direction, so there is an acceleration.)
- How much force is needed to cause an object to move in a circle at a constant speed?

Uniform Circular Motion: Forces

$$\vec{a} = \frac{\vec{F}^{net}}{m}$$

always

$$\vec{a} = -\frac{v^2}{R}\hat{r}$$

 $\vec{a} = -\frac{v^2}{r}\hat{r}$ in order for the object to move in a circle with constant speed.

$$\frac{\vec{F}^{net}}{m} = -\frac{v^2}{R}\hat{r}$$

Therefore, to do this, we need a net force.

$$\vec{F}^{net} = -\frac{mv^2}{R}\hat{r}$$

 $\vec{F}^{net} = -\frac{mv^2}{\hat{r}}$ A(n inward) radial net force is needed to maintain circular motion.