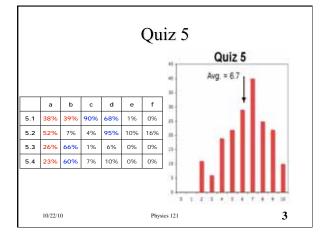
Physics 121 10/22/10


Outline

- Go over Quiz 5
- Energy
- The Work-Energy Theorem
- Example: Gravity

10/22/10

Physics 121

2

Prof. E. F. Redish

Energy

7

- N2 tells us that a force can change an object's velocity in one of two ways:
 - It can change the speed
 - It can change the direction
- Analyzing changes in speed leads us to study energy.
- Analyzing changes in direction leads us to study rotations.

Physics 121

Kinetic Energy and Work

■ Consider an object When is moves a distance $\frac{\Delta v}{\Delta t} = \frac{F^{net}}{m}$ Δx , how much does speed change?

$$a = F^{net} / m$$

$$\frac{\Delta v}{\Delta t} = \frac{F^{net}}{m}$$

$$\frac{\Delta v}{\Delta t} \Delta x = \frac{F^{net}}{m} \Delta x$$

$$\Delta v \frac{\Delta x}{\Delta t} = \frac{F^{net} \Delta x}{m}$$

Physics 121

$$\Delta v \frac{\Delta x}{\Delta t} = \frac{F^{net} \Delta x}{m}$$

$$\langle v \rangle \Delta v = \frac{F^{net} \Delta x}{m}$$

$$\frac{v_i + v_f}{2} (v_f - v_i) = \frac{F^{net} \Delta x}{m}$$

$$\frac{1}{2} (v_f^2 - v_i^2) = \frac{F^{net} \Delta x}{m}$$

$$\frac{1}{2} m (v_f^2 - v_i^2) = F^{net} \Delta x$$

energy = $\frac{1}{2}mv^2$

Work done by a force $F = F \Delta x$

Result

 $\Delta(\frac{1}{2}mv^2) = F^{net} \Delta x$

3

Work in another direction: The dot product

- Suppose we are moving along a line, but the force we are interested in in pointed in another direction? (How can this happen?)
- Only the part of the force in the direction of the motion counts to change the speed (energy).

Calculating dot products

$$F_{\parallel} \Delta s \equiv \vec{F} \cdot \Delta \vec{s}$$
 $\vec{F} \cdot \Delta \vec{s} = F \cos \theta \Delta s$

In general, for any two vectors that have an angle q between them, the dot product is defined to be

$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$$

The dot product is a scalar. Its value does not depend on the coordinate system we select.

cs 121

Example: Gravity

- Whenever we have a force we can see what work it does.
- Consider our work-energy result for a special case: free-fall (only force is gravity).

$$\Delta(\frac{1}{2}mv^{2}) = \vec{F}^{net} \cdot \Delta \vec{s}$$
$$= m\vec{g} \cdot \Delta \vec{s}$$
$$= -mg \Delta h$$

10/22/10

Physics 121

13

Prof. E. F. Redish

Potential Energy: Gravity

■ Since the work term also looks like a change, we can bring it to the left and get a *conservation law*.

$$\Delta(\frac{1}{2}mv^2 + mgh) = 0$$

$$U_g = mgh$$

■ We interpret the quantity mgh as a new kind of energy — gravitational potential energy.

10/22/10

Physics 121

14

Conservation Laws

- A <u>conservation law</u> is a statement that, under certain conditions, something that can be measured or calculated doesn't change, even though the numbers that go into calculating it might.
- Such laws are extremely valuable in figuring out motions.

10/22/10

Physics 121

16

An Energy Conservation Theorem

- Suppose the only force that has a component along the direction of motion is gravity.
 - The only force that changes the object's speed is gravity.
 - Other forces (normal forces) can change direction.
 - Friction must be negligible.
- Examples:
 - free fall
 - object rolling on a track.

$$\Delta(\frac{1}{2}mv^2 + mgh) = 0$$

$$\frac{1}{2}mv_i^2 + mgh_i = \frac{1}{2}mv_f^2 + mgh_f$$
Physics 121

17

Prof. E. F. Redish