Physics 121 10/18/10

October 20, 2010 Physics 121 Prof. E. F. Redish

Theme Music:

Mitch Ryder & the Detroit Wheels

I Can't Hide It

Cartoon: Bill Watterson

Calvin & Hobbes

WANNA SEE SCHEENING IN THIS MET AND POSM DOWN THES WEER AND POSM TOWN THESE TOWN THE BEAUTY OF THE

Outline

- Quiz 5
- Review of impulse and momentum
- Momentum Conservation
- Examples

10/18/10

Physics 121

2

Prof. E. F. Redish

Newton's Laws

- Newton 0:
 - Objects only feel forces when something touches them - plus the non-touching force of gravity (so far). An object responds to the forces it feels when it feels them.
- · Newton 1:
 - An object that feels no unbalanced force keeps moving with the same velocity (which may = 0).
- · Newton 2:
 - An object that is acted upon by other objects changes its velocity so that the acceleration is proportional to the net force and inversely proportional to the object's mass.
- - When two objects interact the forces they exert on each other Physics 121 $\vec{F}_{A \to B} = -\vec{F}_{B \to A}$ are equal and opposite.

Classification of Forces

- where F is either N, T, f, or W
- · Physical forces are interactions what two objects do to each other that tends to change each other's velocity.
- · Touching forces
 - perpendicular to the surface and pressing in (NORMAL N)
 - hooked to the surface and pulling out (TENSION T).
 - parallel to the touching surfaces and opposing the relative motion of the surfaces (FRICTION - f)
- · Non-touching forces
 - the earth pulling an object down (GRAVITY IV)

 $= m_i \vec{g}$

 $T = k\Delta s$ (spring)

5

6

 $\leq \mu_{AB} N_{A \rightarrow B}$

The Impulse-Momentum Theorem

■ Newton 2

 \blacksquare Put in definition of a

 $\frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{F}^{net}}{m}$

■ Cross Multiply

 $m\Delta \vec{v} = \vec{F}^{net} \Delta t$

■ Define Impulse

 $\vec{F}^{net} = \vec{F}^{net} \Delta t$

■ Define Momentum

 $\vec{p} = m\vec{v}$

■ Combine to get Impulse-Momentum Theorem

Prof. E. F. Redish

2

Physics 121

Momentum Conservation: 1

■ Consider a system of two objects, A and B, interacting with each other and with other ("external") objects. By the IMT

$$\Delta \left(m_{\scriptscriptstyle A} \, \vec{v}_{\scriptscriptstyle A} \right) = (\vec{F}_{\scriptscriptstyle A}^{\scriptscriptstyle ext} + \vec{F}_{\scriptscriptstyle B \to A}) \Delta t$$

$$\Delta (m_B \vec{v}_B) = (\vec{F}_B^{ext} + \vec{F}_{A \to B}) \Delta t$$

■ Adding:

$$\Delta(m_A \vec{v}_A) + \Delta(m_B \vec{v}_B) = \left[\vec{F}_A^{est} + \vec{F}_B^{est} + \left(\vec{F}_{A \rightarrow B} + \vec{F}_{B \rightarrow A}\right)\right]\Delta t$$

$$\Delta (m_A \vec{v}_A + m_B \vec{v}_B) = \vec{F}^{ext} \Delta t$$

10/18/10

s 121

Momentum Conservation: 2

So: If two objects interact with each other in such a way that the <u>external</u> forces on the pair cancel, then total momentum is conserved.

$$\Delta (m_A \vec{v}_A + m_B \vec{v}_B) = 0$$

$$m_A \vec{v}_A^i + m_B \vec{v}_B^i = m_A \vec{v}_A^f + m_B \vec{v}_B^f$$

8

7

Example: Recoil

- When an object at rest emits a part of itself, in order to conserve momentum, it must go back in the opposite direction.
- What forces are responsible for this motion?

Do it!

10/18/10

Physics 121

11

Prof. E. F. Redish