
■ Theme Music: Toby Mac

Momentum

■ Cartoon: Bill Watterson Calvin & Hobbes

The Impulse-Momentum Theorem

- Newton 2
- Put in definition of *a*
- Multiply up by Δt
- Define Impulse
- Combine to get Impulse-Momentum Theorem

$$\vec{a} = \vec{F}^{net} / m$$

$$\frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{F}^{net}}{m}$$

$$m\Delta \vec{v} = \vec{F}^{net} \Delta t$$

$$\vec{F}^{net} = \vec{F}^{net} \Delta t$$

$$\Delta \vec{p} = \mathbf{I}^{net}$$

Momentum Conservation: 1

■ Consider a system of two objects, A and B, interacting with each other and with other ("external") objects. By the IMT

$$m_A \Delta \vec{v}_A = (\vec{F}_A^{ext} + \vec{F}_{B \to A}) \Delta t$$

 $m_B \Delta \vec{v}_B = (\vec{F}_B^{ext} + \vec{F}_{A \to B}) \Delta t$

■ Adding:

$$m_{A} \Delta \vec{v}_{A} + m_{B} \Delta \vec{v}_{B} = \left[\vec{F}_{A}^{ext} + \vec{F}_{B}^{ext} + \left(\vec{F}_{A \to B} + \vec{F}_{B \to A} \right) \right] \Delta t$$

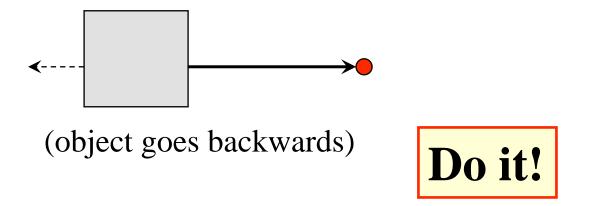
$$\Delta \left(m_{A} \vec{v}_{A} + m_{B} \vec{v}_{B} \right) = \vec{F}^{ext} \Delta t$$

7

Momentum Conservation: 2

■ So: If two objects interact with each other in such a way that the <u>external</u> forces on the pair cancel, then momentum is conserved.

$$\Delta (m_A \vec{v}_A + m_B \vec{v}_B) = 0$$


$$m_A \vec{v}_A^i + m_B \vec{v}_B^i = m_A \vec{v}_A^f + m_B \vec{v}_B^f$$

Example: Recoil

- When an object at rest emits a part of itself, in order to conserve momentum, it must go back in the opposite direction.
- What forces are responsible for this motion?

