■ Theme Music: Left Sock Theory Do the Math

■Cartoon: Jef Mallett

Frazz.

Quiz 3

Quiz 3

	3.1	3.2	3.3	3.4
а	2%	1%	1%	0%
b	4%	4%	93%	14%
С	17%	20%	3%	63%
d	2%	69%	3%	0%
е	68%	6%	1%	18%
ae	1%	0%	0%	0%
be	0%	0%	0%	4%
се	7%	0%	0%	0%

Newton 2 is a vector equation

- We have sort of been assuming that up and down forces were independent of sideways forces.
- This tests out true in detail. It means N2 is a vector equation: $\vec{a} = \vec{F}^{net} / m$

■ A vector equation is a way of writing 2 equations at once:

$$a_x = \frac{F_x^{net}}{m}$$
 $a_y = \frac{F_y^{net}}{m}$

Our velocity and acceleration definitions generalize easily

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t}$$
 $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$ $\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$ $\Delta \vec{v} = \vec{v}_f - \vec{v}_i$

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t} \qquad \langle v_y \rangle = \frac{\Delta y}{\Delta t}$$

$$\langle a_x \rangle = \frac{\Delta v_x}{\Delta t} \qquad \langle a_y \rangle = \frac{\Delta v_y}{\Delta t}$$
If a is constant
$$\langle v \rangle = \frac{v_i + v_f}{2}$$
for either v_x or v_y .

$$\langle v \rangle = \frac{v_i + v_f}{2}$$

Recap: Coordinates and Vectors

- Set up a coordinate system
 - Pick an origin
 - Pick 3 perpendicular directions
 - Choose a measurement scale
- Each point in space in then specified by three numbers: the x, y, and z coordinates.
- The <u>position vector</u> for a particular position is an arrow drawn from the origin to that position.

Recap: Motion in a plane (2-dimensional coordinates)

- We now have 2 directions to specify. We must
 - Choose a reference point (origin)
 - Pick 2 perpendicular axes (x and y)
 - Choose a scale
- We specify our x and y directions by drawing little arrows of unit length in their positive direction.

$$\hat{i},\hat{j}$$

 \blacksquare A position specified by a point (x,y) is written

$$\vec{r} = x\hat{i} + y\hat{j}$$

Adding Vectors: Meaning

- A position vector, \vec{r} , represents a displacement from the origin.
- We define the sum of two vectors as the results of their successive displacements.

$$\vec{r} = \vec{r}_1 + \vec{r}_2$$

Subtracting Vectors: Meaning

■ We define the difference of two vectors from the definition of sum.

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = \vec{r}_2 + (-\vec{r}_1)$$

■ Or: The difference is what has to be added to the first to give the second.

Adding Vectors: Methods

■ There are 3 mathematical ways to add vectors

parallelogram rule $\vec{r}_{1} = x_{1}\hat{i} + y_{1}\hat{j}$ Algebra! $\vec{r}_{2} = x_{2}\hat{i} + y_{2}\hat{j}$ $\vec{r}_{1} + \vec{r}_{2} = x_{1}\hat{i} + y_{1}\hat{j} + x_{2}\hat{i} + y_{2}\hat{j}$ $= x_{1}\hat{i} + x_{2}\hat{i} + y_{1}\hat{j} + y_{2}\hat{j}$ $= (x_{1} + x_{2})\hat{i} + (y_{1} + y_{2})\hat{j}$

coordinates

9/29/10

head

to tail

Physics 121

15