
Physics 121 9/27/10

Outline

- Quiz 3 on acceleration
- Recap of Newton's Laws
- Gravity

Physics 121

Footholds 2.0			
Revised summary of Newton's Laws			

- - Objects only feel pForces when something touches them. An object responds to the pForces it feels when it feels them.
- Newton 1:
 - An object that feels a <u>net pForce</u> of 0 keeps moving with the same velocity (which may = 0).
- - An object that is acted upon by other objects changes its velocity according to the rule $\vec{a} = \vec{F}^{net}/n$
- Newton 3:

-	When two objects interact the proces
	they exert on each other are
	equal and opposite.

$\vec{F}_{A o B}$	=	$-\vec{F}_{B o A}$
--------------------	---	---------------------

3

/m

2

Prof. E. F. Redish 1 Physics 121 9/27/10

Force-labeling convention

- According to our foothold idea, forces are what objects do to each other when they touch.
- If a force is a
 - normal force we label it as
 - tension force we label it as
 - friction force we label it as
- We put subscripts on each force telling who is acting on whom.

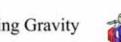
 $F_{(object \ causing \ force)
ightarrow (object \ feeling \ force)}$

Vertical motions

- If we no longer restrict our considerations to horizontal motions, we know objects can change their velocities when nothing is touching them.
- We have to either choose to reject our insights and laws developed from horizontal experiments or see if we can adapt them.

Proposing Gravity

6


4

- Suppose we try to include vertical motions in our system by hypothesizing:
 - There is a non-touching force that acts on every object.
- Could some other object be causing it? What?
- What are its properties?
 - How does it depend on position? time?
 - How does it depend on the object?

Physics 121

7

Prof. E. F. Redish 2

The Properties of Gravity

- How can we tell how the force of gravity depends on an object?
- Do you think the force of gravity is the same or different for different objects?
- Experiment: See how it behaves when gravity is the <u>only</u> force acting on it.
 We expect it to speed up (accelerate).
 How does that acceleration depend on the object?

 $\vec{a} = \frac{\vec{W}}{m}$ Physics 121

9/27/10

8

The Gravitational Field Strength

We find that, when we can ignore the effects of other objects (the air), that all objects accelerate the same in free fall (only W acting).

$$\vec{a} = \frac{\vec{W}}{m} = \vec{g}$$

- Experimentally, this is a constant independent of the object. Therefore: $\vec{W} = m\vec{q}$
- Define the constant g as the gravitational field strength. (Units of N/kg)

9/27/10

Physics 121

11

Making sense

- Consider two experiences to see if we can make sense of this.
 - A. If I hold the light object and the heavy objects in my hands, which one is pulled more by gravity?
 - B. If I kick a soccer ball and a cannon ball with the same kick, which one will speed away faster?

9/27/10

Physics 121

12

Foothold Ideas: Gravity

Every object (near the surface of the earth) feels a downward pull proportional to its mass:

$$\vec{W}_{E o m} = m \vec{g}$$
 What objections $\vec{W}_{E o m}$

where \vec{g} is referred to as the gravitational field.

- This is a pForce even though nothing touching the object is responsible for it.
- The gravitational field has the same magnitude for all objects irrespective of their motion and at all points.
- The gravitational field always points down.
- It is measured to be $g \approx 9.8 \text{ N/kg}$

Newton's Laws: 3.0

A pForce is what two objects do to each other when they touch that can

- Newton 0:
 - Objects only feel pForces when something touches them plus the effect of gravity (which does not require touching). An object responds to the forces it feels when it feels them.
- Newton 1:
 - An object that feels a net pForce of 0 keeps moving with the same velocity (which may = 0).
- - An object that is acted upon by other objects changes its velocity according to the rule $\vec{a} = \vec{F}^{net} / m$
- Newton 3:
 - When two objects interact the pForces they exert on each other are equal and opposite.

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

Response to Gravity: Free Fall

- After an object has been released,
 - if it is dense enough so the forces from the air can be ignored
 - if nothing else is touching it

the only force acting on it is gravity.

$$\vec{a} = \vec{F}^{net} / m = \vec{W}_{E \to m} / m = \vec{m} \vec{g} / m = \vec{g}$$

15

Is it really true that air is what makes a difference for light objects?

9/27/10

Calculating the motion of a body in free fall

- Free-fall doesn't just mean "falling". It means "there are no other pForces that have to be considered other than gravity."
- Consider up and down motion only.

$$a = \frac{F^{ned}}{m} = \frac{W_{E \to m}}{m} = \frac{mg}{m} = g$$

$$\langle a \rangle = g = \frac{\Delta v}{\Delta t} \qquad \langle v \rangle = \frac{\Delta y}{\Delta t}$$
Physics 121

$$\langle a \rangle = g = \frac{\Delta v}{\Delta t}$$
 $\langle v \rangle = \frac{\Delta y}{\Delta t}$

17

16

Example

■ Suppose I throw the ball upward and it leaves my hand with a velocity v_0 . How far up does it go and how long does it go upward?

$g = \frac{\Delta V}{\Delta t} \qquad \langle V \rangle = \frac{\Delta Y}{\Delta t}$
$v_i = v_0 \qquad y_i = 0 \qquad t_i = 0$
$v_f = 0$ $y_f = h$ $t_f = T$
$g = \frac{v_f - v_i}{t_f - t_i} \qquad \langle v \rangle = \frac{y_f - y_i}{t_f - t_i}$
$g = \frac{v_0}{T} \qquad \langle v \rangle = \frac{h}{T}$
$\langle v \rangle = \frac{v_i + v_f}{2} = \frac{v_0}{2}$
$T = \frac{v_0}{g} \qquad \frac{v_0}{2} = \frac{h}{T}$
$h = \frac{1}{2}v_0T = \frac{v_0^2}{2g} = \frac{1}{2}gT^2$
10

Physics 121

Prof. E. F. Redish

5