Physics 121

Newton's law of motion

■ As a result of taps

 $T = \Delta v$

■ Between taps

 $\Delta x = v \Delta t$

9/22/10 Physics 121

Prof. E. F. Redish

6

Is "tap" the right concept?

- Is a "tap" (𝒯) the right concept?
- Is it really something the hammer gives to the ball?
 - Or does the "tap" also depend on the ball?
- Consider multiple bowling balls ganged together with long bolts.

9/22/10

7

Impulse

- We expect (and would find if we actually did the experiment) that the effect of a given "hit" with a hammer produces a smaller effect (less Δν) for more bowling balls.
- We therefore replace the "tap" by an "impulse" something delivered by the hammer to the object.

$$\mathcal{T} = \frac{\mathcal{I}}{m} \stackrel{\text{delivered by hammer to object}}{\longleftarrow} \text{number of bowling balls}$$

9/22/10

Physics 12

8

Newton's 2nd Law

$$\Delta v = \frac{1}{m}$$

$$\Delta x = v \Delta t$$

- Where
 - f is the "impulse" (something delivered to the object by another object touching it)
 - m is the "mass" (a property of the object that says how many bowling balls it is equivalent to)

9/22/10

Physics 121

9

Prof. E. F. Redish

A More Familiar Form

If the object that is causing the change of velocity by touching our object doesn't "tap" it but touches it continually, it's more convenient to extract a time by writing

$$\mathcal{I} = F\Delta t$$

then we get

we get
$$\Delta v = \left(\frac{F}{m}\right) \Delta t$$

$$\Delta x = v \Delta t$$

$$a = \frac{F}{m}$$

Technical term alert: What's a pForce?

- The "F" in the last slide is an expression of the idea:
 - When two objects touch they do something to each other that tends to change the other's velocity.
- Although the technical term for this is "force" it is different from the common speech idea of force.
 - It is an interaction between two objects.
 - It only occurs (so far) via contact.
- Until we are accustomed to this new term we will refer to "physical-force" (pForce).

9/22/10

Physics 121

11

Two Foothold Ideas

- Newton 1:
 - If all the influences (pForces) acting on an object are balanced (or zero) the object keeps whatever velocity it has.
- Newton 0:
 - An object responds to the pForces that act on it at the instant considered.
 (Objects have no long range sensors and no memory for anything except their velocity.)

9/22/10

Physics 121

13

Prof. E. F. Redish

Physics 121 9/22/10

Newton 0: Thinking inside the box

- "Physics by empathy"
- "Method acting" an acting technique in which actors try to replicate real life emotional conditions under which the character operates, in an effort to create a life-like, realistic performance.
 - "What's my motivation?"

9/22/10

Physics 121

15

Measuring pForces

- We need some way of quantifying pForces.
- To do that, we need to find a physical system that changes when it exerts a pForce in a way we already know how to measure.
- Springs change their length when they exert a pForce and we know how to measure length.

9/22/10 Physics 121 **16**

Springs

If you pull on a spring from both sides it changes its length.

T = ks

("s" = stretch or squeeze)

Let's create a "standard" spring that when it stretches a certain length it produces a given acceleration on a particular mass.

9/22/10 Physics 121 **17**

Prof. E. F. Redish

Dimensions of pForce

$$[F] = [ma] = M \frac{L}{T^2}$$

Choose the unit

 $1 \text{ Newton} = 1 \text{ kg-m/s}^2$

This is the pForce needed to give a 1 kg mass an acceleration of 1 m/s²
Remen

9/22/10 Physics 121 **1**

pForce-labeling convention

- According to our foothold idea, pForces are what objects do to each other when they touch.
- If a pForce is a
 - Normal pForce we label it as
 - Tension pForce we label it as
 - Friction pForce we label it as f
- We put subscripts on each force telling who is acting on whom.

 $\vec{F}_{(object \ causing \ force)
ightarrow (object \ feeling \ force)}$

9/22/10 Physics 121

Summary of Newton's Laws

- Newton 0:
 - Objects only feel pForces when something touches them
 An object responds to the pForces it feels when it feels them.
- Newton 1:
 - An object that feels a net pForce of 0 keeps moving with the same velocity (which may = 0).
- Newton 2:
 - An object that is acted upon by other objects changes its velocity according to the rule

 $\vec{a} = \vec{F}^{net} / n$

19

9/22/10 Physics 121 **20**