
■ Theme Music: John Coltrane Welcome

■Cartoon: Lynn Johnston For Better or for Worse

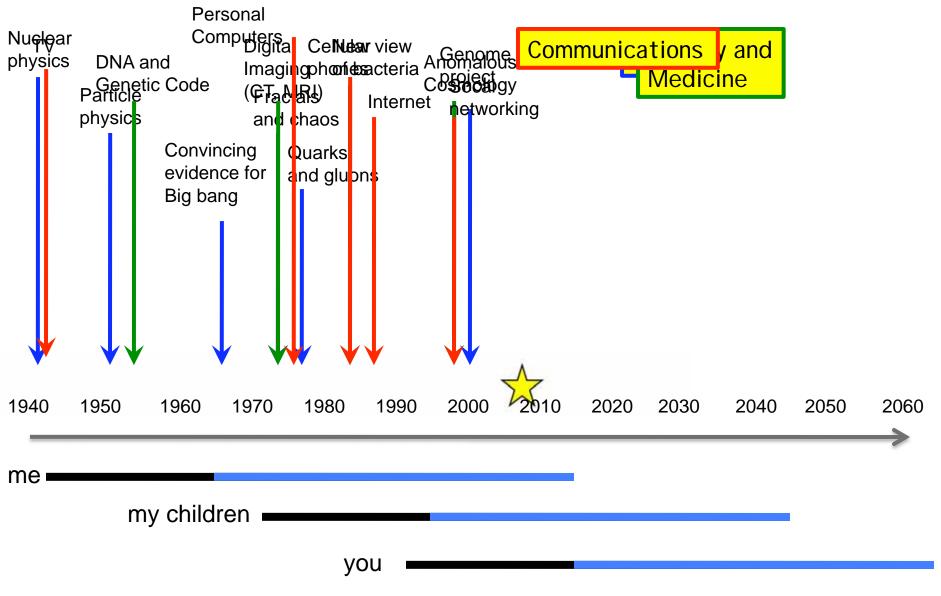
Recitations and Labs

- No lab this week or next.
- Go to your recitation section this week to
 - do a pre-test survey
 - get your picture taken
- Regular labs and recitations (tutorials) begin on 9/13.

8/30/10

Buy?

- ✓ BUY a lab/tutorial manual.
- ☑ BUY a clicker
 - Bring it to every class.
 - Register it at http://my.umd.edu under the Academics and Testudo tab


- **☑** BUY Mastering Physics
 - The on-line HW product.
- ☐ You do not have to buy a text. If you want one, you might like
 - Touger,
 - Knight et al.,
 - Cummings et al. (available to this class on-line)

This class is designed to help you develop a deeper understanding of science. Why?

- "Adaptive expertise"
- Self-preservation (both mine and yours)
- Why not? Physics is a good place to do this!

8/30/10

Time Line

8/30/10

Adaptive expertise

- The rapid pace of change in science implies that critical skills for scientists (and health-care professionals) in the next few decades will be
 - the ability to continue to learn
 - the ability to understand the implications of new discoveries
 - the ability to integrate new tools and knowledge into their practice of science.

Why physics?

- Physics is a good place to develop some general scientific skills associated with deeper learning and adaptive expertise.
- It connects with things you know from everyday experience.
- It helps develop tools of general value.
 - Quantification of experience
 - Multiple representations
 - Coherence
 - Mechanism
 - Building physical intuition

Class Info

- Webpages
 - http://www.physics.umd.edu/courses/Phys121/Redish/
- Blackboard
 - https://elms.umd.edu/

For your eyes only.

- Listserve
 - phys121-02all-fal10@coursemail.umd.edu

If you haven't gotten any emails from me yet, see me!

Main course

info. Lots of

good stuff.

Homework

■ Three kinds

- Online typically a few exercises and online activities + about 4 (of my own) problems in MP. The one due Friday is just familiarizing yourself with the interface (but it's worth points).
- Friday lecture one long problem to write up on paper.
- Tutorial HW short, due in Tutorial.
- Work with others! But...
- Course Center!

Tutorials

- Discussion sections are run as group-learning sessions with worksheets.
- They will help to build difficult concepts and clarify confusing topics.
- They will focus on helping you understand, evaluate, and refine your intuitions.
- Tutorial HW a quick review of Tutorial ideas. (expect to spend ~15-30 min)
 - Graded 0-1 on \sim 5 elements.
 - Hand in at tutorial section

Labs

- Labs are required!

 Try very hard not to miss any.

 It will be difficult to make up missed labs.
- Labs will be non-traditional and will run over two weeks (4 hours)
- You will work in groups of 4 and create one lab report per group
- You will design, carry out, analyze, and present your results to the class.
- \blacksquare You will use *Excel* to analyze your data.

Theme of the Laboratory: Understanding Measurement

- Although we will be using physics concepts learned in lecture, reading, and tutorial in lab, demonstrating their correctness will NOT be the point of the lab.
- The goal of the laboratory will be to have you learn to think about measurement and data.
 - How does you goal affect your experimental design?
 - How does your experimental design affect your data?
 - How trustworthy is your data?
 - Why should someone believe your result?
 - When are two results "close enough" that we can say they agree?
 - When two results differ, how can we decide what is the correct answer?

Exams

- Two midsemester exams and one final.
- Exams will be about thinking, not memorizing.
- Midsemester exams
 - Given on Friday
 - Returned on Monday and gone over in class
- Written regrade requests encouraged
- Makeup exams the following Thursday (out of class) for anyone who wants, but...

Exams will include...

- A multiple-choice or short answer set of questions on translating representations (~25-30%)
- Two problems to work out and explain typically with symbols, not numbers (~50%)
- An essay question (\sim 10%)
- An estimation problem (\sim 15%).

Grading

■ Total	1000
Participation	100
■ Lab (scaled to)	200
■ Homework (scaled to)	200
■ Final exam (200 pts)	200
Quizzes (about)	100
■ Hour exams (100 pts)	200

Estimate: A ~ $(85 \pm 3)\%$, B ~ $(75 \pm 3)\%$, C ~ $(65 \pm 3)\%$

Small barriers

- In this class there can be lots of small barriers that we need to take down.
- Most are not a big deal they can be made sense of and cleared up in a couple of hours of work, thinking, and practice.
- But previous experience and phobias can make them hard to remove.
- The presence of a lot of these barriers can cause a lot of trouble. Clean up as many as you can!

Don't be afraid to come in and say, "I'm confused about fractions" — or anything else!