TWO FREE RIDES PLUS SPEED AND SIZE OF MOON

- $\underline{\mathbf{A}}$ The earth gives us two free rides
 - (i) Due to rotation of Earth about its axis

Time for Rotation = 24 hours Radius of Earth = 4000 miles = 6400 km Our Latitude = 45° Radius of $6R = R_E \sin 45 = R_E \cos 45$

Speed Due to Rotation =
$$\frac{2\pi R}{24}$$
 mph
= $\frac{2\pi \times 4000 \times \sin 45}{24} \approx 700$ mph
 ≈ 1120 km/hour

(ii) Due to revolution of Earth around the sun

Radius of Earth's Orbit = 93,000,000 miles Time for Revolution =1 year = (365.25×24) hours

Speed due to Revolution =
$$\frac{2\pi \times 93 \times 10^6}{235.25 \times 24}$$

$$\approx 67,000 \,\text{mph}$$

$\underline{\mathbf{B}}$ Speed and Size of Moon:

To access speed of moon we need two observers to go out at midnight on a full moon night and observe a star such that the moon intercepts the light from the star. Star is very far so light from it is a parallel beam. Both observers on same latitude so both have same velocity V_0 due to Earth's rotation.

The picture is

At time t_1 moon intercepts light from star as seen by O_1

At time t_2 moon intercepts light from star as seen by O_2

 $O_{\rm 2}\,{}^{\rm I}O_{\rm 2}=O_{\rm 1}\,{}^{\rm I}O_{\rm 1}=$ distance travelled by observer due to motion of Earth Hence

$$V_M(t_2-t_1)=d+V_0(t_2-t_1)$$

Speed of moon

$$V_M = \frac{d}{(t_2 - t_1)} + V_0$$

Once we know $V_{\scriptscriptstyle M}$ a single observer can "measure" diameter of moon.

Again, concentrate on light from a star being intercepted by moon.

Distance mobbed by moon = $d_M + V_0(t_A - t_d)$ Where d_M = diameter of moon

$$V_{M}(t_{A} - t_{d}) = d_{M} + V_{0}(t_{A} - t_{d})$$
$$d_{M} = (V_{M} - V_{0})(t_{A} - t_{d})$$

Which will allow us to measure d_M .