TORQUE

TORQUE: IS THE PHYSICAL AGENCY WHICH IS NECESSARY TO CAUSE ANGULAR ACCELERATION AND HENCE ROTATION ABOUT AN AXIS. WE WILL CONSIDER THE CASE OF ROTATION ABOUT A FIXED AXIS. TO HAVE A TORQUE ONE MUST APPLY A FORCE AT SOME DISTANCE FROM THE AXIS ABOUT WHICH ROTATION IS DESIRED.

Consider the following:

You want to open a door which is hinged along the y-axis.

You pick a point which is some distance \underline{r} from the hinge. Indeed the larger the r the less push (force) you will need to cause the door to swing. Next, you need to apply a force <u>perpendicular</u> to \underline{r} . If \underline{F} is parallel to \underline{r} the door will never open. Notice that $\underline{r} \parallel \hat{x}$, $\underline{F} \parallel -\hat{z}$ but door rotates about \hat{y} . Indeed the physical agency that causes the swing is the Torque Vector, \underline{r} which is parallel to \hat{y} . Amazing, \underline{r} is horizontal, \underline{F} is horizontal but \underline{r} is vertical.

We need a new concept in vector algebra such that multiplying two vectors produces a third vector which is perpendicular to both of them. Such a product is called a vector product or cross product. Given two vectors \underline{A} and \underline{B} with an angle

$$\Theta = (\underline{A}, \underline{B})$$

Between them, the vector product is written as

$$\underline{C} = (\underline{A} \times \underline{B})$$

The magnitude of C is

$$C = AB\sin(\underline{A},\underline{B})$$

 \underline{C} is perpendicular to the AB plane. Which perpendicular?

Right Hand Rule: Stretch right hand

First Vector

A ||Thumb

Second Vector

B ||Fingers

Third Vector

 $C\perp Palm$

The Torque Vector can now be defined formally. A bar of length \underline{r} can pivot (rotate) about an axis perpendicular to point \underline{P} We apply force \underline{F} as shown

Torque

$$\underline{\tau} = \underline{r} \times \underline{F}$$

Direction of \underline{r} is always from pivot point P to point of application (0) of force \underline{F} .

Direction of $\underline{\tau}$ along $+\hat{z}$

Magnitude of $\tau = rF \sin \Theta = rF_{\perp} = r_{\perp}F$

 $F_{\perp} =$ Component of F_{\perp} Bar

 r_{\perp} = Perpendicular distance between \underline{F} (extended) and P [sometimes called moment arm].

Immediately one notices

 $\underline{\tau}$ is zero if $\underline{F} \parallel \underline{r}$

 $\underline{\tau}$ is maximum when $\underline{F} \perp \underline{r}$