SOME CONSEQUENCES OF EARTH'S ROTATION

The Earth is essentially a sphere of radius about 6400km which rotates about its axis once every 24 hours.

So angular Velocity is:

$$w_E = \frac{2\pi}{24 \times 3600} \cong 7.3 \times 10^{-5} \, rad \, / \, s$$

$$\text{Choose CCW}$$

$$w_E = +7.3 \times 10^{-5} \, rad \, / \, s\hat{z}$$

$$\text{EQUATOR}$$

So every point on Earth is in uniform circular motion. At latitude Θ the radius of the circle is $R_E Cos \vartheta$ so centripetal acceleration is

$$\underline{a_c} = -R_E \cos \Theta w_E^2 \hat{r}$$

At the pole
$$\Theta = \frac{\pi}{2}$$
, $\underline{a_c} = 0$

At the equator
$$\Theta = 0$$
, $a_c = -R_E w_E^2 \hat{r} \cong -0.03 m/s^2 \hat{r}$

So CONSEQUENCE I:

Our assumption that systems fixed with respect to Earth's surface are Inertial is not precisely correct; except at the Poles. The error is small because $g = 9.8m/s^2$ but it is important.

CONSEQUENCE II:

The apparent weight is not the same at all Θ . At the pole and at the equator the answer is simple because $\underline{q}_c \parallel \underline{g}$ (both along radius of the Earth)

At the pole
$$\underline{a_c} = 0$$
 $N_R - M_g = 0$ $N_R = M_g$

At the Equator

$$(N_R - M_g)\hat{r} = -R_E w_E^2 \hat{r}$$

So
$$N_R = M(g - R_E w_E^2)\hat{r}$$

= $M(9.8 - 0.03)m/s^2\hat{r}$
weight is reduced by about 0.3%

CONSEQUENCE III:

This Is the most subtle and happens for any Θ other than 0 and $\frac{\pi}{2}$ because $\underline{a_c}$ is

NOT parallel to g.

$$\underline{a_c} = R_E w_E^2 \cos \Theta$$

Indeed now q_c has a component parallel to surface of Earth

$$a_{c\parallel} = R_E w_E^2 \sin\Theta \cos\Theta$$

and a component along radius of Earth

$$a_{c\perp} = -R_E w_E^2 \cos^2 \Theta \hat{r}$$

which is along r so it modifies "g" slightly.

Since we have an $\,a_{c\parallel}$, if you try to hang a pendulum, it cannot be vertical (parallel to $\,\hat{r}$).

It must tilt to yield a force to produce $a_{c\parallel}$

$$\tan \delta = \frac{a_{c\parallel}}{g}$$

$$\approx \frac{\sin \Theta \cos \Theta R_E w_E^2}{g}$$

$$\delta \to 0 \qquad \Theta = 0 \quad \text{and} \quad \Theta = \frac{\pi}{2}$$

The situation is exactly like the case of a pendulum hanging in a cart which has an acceleration $q = -a\hat{x}$. (Prob. 4-16)

$$-T\sin\Theta = -Ma$$
$$T\cos\Theta - Mg = 0$$

$$\tan\Theta = \frac{a}{g}$$

