KINEMATICS - TWO DIMENSIONS - PROJECTILE MOTION

At t = 0 a projectile is launched from the origin $(x_i = 0, y_i = 0)$ with a velocity of v_i m/sec at angle of Θ_i above the horizon (x-axis). What are the equations which describe its motion in the xy-plane? It is best to write down the components and then the vectors.

·	x-component	y-component	<u>Vector</u>	
Acceleration	0	$9.8m/\sec^2$	$\underline{a} = O\hat{x} - 9.8m/s^2\hat{y}$	\rightarrow (1)
Velocity	$v_i \cos \Theta_i$	$v_i \sin \Theta_i - 9.8t$	$\underline{y} = (v_i \cos \Theta_i)\hat{x} - (v_i \sin \Theta_i - 9.8t)\hat{y}$	\rightarrow (2)
Position	$(v_i \cos \Theta_i) t$	$\left(v_{i}\sin\Theta_{i}\right)\ t-4.9t^{2}$	$\underline{r} = (v_i \cos \Theta_i)t\hat{x} + \left[(v_i \sin \Theta_i)t - 4.9t^2 \right]$	$\hat{\mathcal{V}} \rightarrow (3)$

We can also write for the y-velocity

$$v_y^2 = (v_i \sin \Theta_i)^2 - 19.6y$$
 \to (4)

and we use Eq(4) when t is not known.

Questions

1. What is its path in the xy-plane as we saw the parabola in the water stream. To derive it note that

$$y = (v_i \sin \Theta_i)t - 4.9t^2$$
$$x = (v_i \cos \Theta_i)t$$

so one can write

and

$$y = \frac{(v_i \sin \Theta_i)x}{(v_i \cos \Theta_i)} - 4.9 \left(\frac{x}{v_i \cos \Theta_i}\right)^2$$
$$= x \tan \Theta_i - 4.9 \left(\frac{x^2}{v_i \cos \Theta_i}\right) \longrightarrow (5)$$

This is a very useful equation. Do not need to know t, relates y to x and v_i . See plot along side. It helps to define two quantities

 y_{top} = highest point during flight

R = range; distance travelled before returning to Earth.

2. Why does it stop rising? Because the y velocity goes to zero. Using Eq(4) we write

$$y_{top} = \frac{v_i^2 \sin^2 \Theta_i}{19.6}$$
 \rightarrow (6)

3. What is its acceleration while it is in the air? At all points $y \neq 0$

$$! \rightarrow \quad \vec{a} = -9.8m/s^2 \hat{y} \quad \leftarrow !$$

fixed by the Earth.

4. Velocity at y_{top} , $v_y = 0$, $v_x = v_i \cos \Theta_i$

$$\mathbf{y} = (\mathbf{v}_i \cos \Theta_i)\hat{\mathbf{x}} + 0\hat{\mathbf{y}}$$

5. When does it get to y_{lop} ? $v_y = 0$ there

So we use

$$v_{\nu} = v_{i} \sin \Theta_{i} - 9.8t$$

And get

$$t_{top} = \frac{v_i \sin \Theta_i}{9.8}$$
 \rightarrow (7)

6. When does it return to ground (y = 0)?

Use

$$y = (v_i \sin \Theta_i)t - 4.9t_{gr}^2$$

So

$$O = (v_i \sin \Theta_i) t_{gr} - 4.9 t_{gr}^2$$

$$t_{gr} = \frac{v_i \sin \Theta_i}{4.9} = 2t_{top}$$
 \rightarrow (8)

7. What is its velocity just before it hits ground

$$v_x = v_i \cos \Theta_i$$

$$v_y = v_i \cos \Theta_i - 2 \frac{v_i \sin \Theta_i}{9.8} \times 9.8$$

$$= -v_i \sin \Theta_i$$

$$v = (v_i \cos \Theta_i) \hat{x} - (v_i \sin \Theta_i) \hat{y}$$

Hence

That is, x-component of velocity is same as at the start, y-component is reversed.

8. What is the range?

$$x = (v_i \cos \Theta_i)t$$

And to get to R

$$t = t_{gr} = \frac{2v_i \sin \Theta_i}{9.8}$$

$$R = \frac{(v_i \cos \Theta_i)(2v_i \sin \Theta_i)}{9.8}$$

$$= \frac{{v_0}^2 \sin 2\Theta_i}{9.8}$$

 \rightarrow (9)

9. For a given v_i what launch angle will give you maximum range R? (Galileo's findings)

Eq(10) says

$$R = \frac{{v_0}^2 \sin 2\Theta_i}{9.8}$$

Maximum value of $\sin 2\Theta_i = 1$ when $2\Theta_i = \frac{\pi}{2}$. Hence maximum range when $\Theta_i = 45^\circ$.

Also, note that there are two angles for which R is the same.

$$2\Theta_{2} = \frac{\pi}{2} + \alpha$$

$$2\Theta_{1} = \frac{\pi}{2} - \alpha$$

$$\Theta_{1} + \Theta_{2} = \frac{\pi}{2}$$

So Θ_1 and Θ_2 are complementary angles.

10. What happens if projectile is launched at x = 0, $y = y_i$. In that case

$$y_{top} = y_i + \frac{v_i^2 \sin^2 \Theta_i}{19.6}$$

and R is obtained by solving the quadratic equation

$$O = y_i + R \tan \Theta_i - 4.9 \left(\frac{R^2}{v_i^2 \cos^2 \Theta_i} \right)$$

$$R$$

$$X_{im}$$

$$R = \frac{-v_i^2 \sin \Theta_i \cos \Theta_i \pm v_i \cos \Theta_i \sqrt{v_i^2 \sin^2 \Theta_i + 19.6 y_i}}{-9.8}$$

Not surprisingly, the projectile travels farther before returning to ground. This is what led Newton to suggest that if one goes high up and uses a large enough initial speed one can get the projectile to go around the Earth.