FIRST LAW- THERMODYNAMIC PROCESSES

For simplicity we are going to assume that our system consists of a perfect gas. Quantity will be n mols so

$$PV = nRT$$

First law tells us that

$$DQ = dU + DW$$

and u is a function of T only.

Monatomic gas
$$U = \frac{3}{2} nRT$$
 (MA)

Diatomic gas
$$U = \frac{5}{2} nRT \quad [near \ 300K]$$
 (DA)

I: Constant Volume [ISOCHORE]

Here
$$DW = 0$$

So

$$DQ = dU$$
$$= \frac{3}{2} nR\Delta T$$

Specific Heat (Quantity of heat required to change temperature by 1°K)

$$C_v$$
 per mol is $\frac{3}{2}R$ (MA) $\frac{5}{2}R$ (DA)

N.B. As V is const.
$$\frac{P_2}{P_1} = \frac{T_2}{T_1}$$

II: Constant Pressure [P = Const.]

$$DQ = dU + P \Delta V = \frac{3}{2} nR \Delta T + P \Delta V$$

PISTON DOES NOT MOVE DW=0

$$PV = nRT$$

$$(P + \Delta P)(V + \Delta V) = nR\Delta T$$

$$P\Delta V + V\Delta P = nR\Delta T$$

$$\Delta P = 0, \qquad P\Delta V = nR\Delta T$$

 $[\Delta P \Delta V negligible]$

So
$$DQ = \frac{3}{2}nR\Delta T + nR\Delta T$$
 (MA)

Specific heat

$$C_{p} = \left(\frac{DQ}{\Delta T}\right)_{p} = \frac{5}{2}nR$$

$$C_{p} \text{ per mol} = \left(\frac{5}{2}\right)R \qquad (MA) \qquad [C_{p} - C_{v} = R]$$

$$= \left(\frac{7}{2}\right)R \qquad (DA)$$

 $\underline{NOTE:}C_p$ ALWAYS LARGER THAN $C_V!$

Define

$$\gamma = \frac{C_p}{C_v}$$
, always ≥ 1

III: <u>ISOTHERM.</u>

Temperature is const.

P $\alpha \frac{1}{V}$ SO ISOTHERM MUST HAVE NEGATIVE SLOPE IN Pvs V DIAGRAM.

$$DQ = \frac{3}{2} nRT \ln (V_f / V_i)$$

IV: $\underline{ADIABATIC}$ [L

$$[DQ=0.]$$

IF GAS EXPANDS IT MUST COOL DOWN BECAUSE DW COMES FROM ${\rm d}{\rm U}$

 $0 = dU + P \Delta V$

Implies:

$$PV^{\gamma} = Const.$$

 $\gamma > 1$

or

$$TV^{\gamma-1} = Const.$$

<u>N.B.</u>

Since dU is independent of path

$$dU = 0$$

for a closed loop so

$$\overline{DQ} = DW$$

For the cycle shown

 $A \rightarrow B$

Gas does work.

 $B \rightarrow A$

You do work.

Gas does more work than you do so you must <u>ADD</u> heat into the system to carry out this cycle.