Week 11- Problems

11-1 What is a rigid body?

11-2 What is the difference between force and torque?

11-3 Four particles of equal masses M are connected by thin (massless) rods. Calculate the moment of inertia (i) about the y-axis, (ii) about the dashed line (45^o to x-axis).
11-4 For a rigid body, in translation the linear momentum \(P = MV \) and the kinetic energy is \(K = \frac{P^2}{2M} \). Show that in rotation about a fixed axis, the kinetic energy is \(K = \frac{L^2}{2I} \), the angular momentum is \(L = I\omega \) where \(I \) is the moment of Inertia.

11-5 What is the kinetic energy of the Earth due to its daily rotation? Assume that the moment of Inertia is \(I = \frac{1}{3} M_B R_E^2 \).

11-6 For a disk rotating on an axis perpendicular to its center \(I = \frac{Mr^2}{2} \). The disk shown has \(M = 5\text{kg} \) and \(r = 0.5\text{m} \). For the forces indicated (i) what is the total torque in the disk? (ii) What is the angular acceleration of the disk?
11-7 A disk of radius 20cm and mass 0.05kg is rotating about the z-axis with angular velocity \(\omega = -2 \text{rad/s} \). If you wish to stop it in 5 secs, what force must be applied on the rim?

11-8 In the loop-the-loop of problem 10-8 suppose the object is a sphere of radius \(r \) which rolls without slipping as it goes around the track. What is the minimum value of \(h \) necessary so it can go completely around the loop? \((I = \frac{2}{5} Mr^2) \).

11-9 A ladder of mass \(M \) and length \(L \) is leaning against a smooth vertical wall. The floor is rough, the coefficient of static friction being \(\mu_s \). Explain why it is essential that to prevent slipping you must not make the angle \(\theta \) too small.
11-10 A 4kg cylinder is mounted so it can rotate freely about its horizontal (z) axis. A string is wound around the cylinder and has a 1 kg mass hanging. If you release the 1 kg mass, how far will it drop in 2 secs? Why?

![Diagram of a cylinder with a string winding around it and a 1 kg mass hanging from it.]

11-11 On an inclined plane you release (i) a ring and (ii) a sphere. Which will reach the bottom first if there is no slip in either case? Why?

\[
I_{\text{ring}} = Mr^2, \quad I_{\text{sphere}} = \frac{2}{5}Mr^2
\]
11-12 In the Atwood machine [Prob 4-14] the pulley has a mass M_p. Show that the magnitude of the accelerations of M_1, M_2 is

$$a = \frac{(M_1 - M_2)g}{M_1 + M_2 + \frac{M_p}{2}}$$

if the string does not slip on the pulley.

11-13 Calculate the pressure increase in the fluid in a syringe if the nurse applies a force of 42 N to the syringe’s piston of diameter 0.5 m.

11-14 The pressure at the center of a tornado is 0.1 atm. What is the net force on a window pane of dimension 1.4m x 1.4m? Assume that the house is airtight and the pressure inside is 1 atm.