2-1. S = 60 mph
 1 mile = 5280 ft, 1h = 3600 sec.
 S = \frac{60 \times 5280}{3600} = 88\text{ ft/sec}

 They are equal

2-3. 65 mph = 29.06 m/sec
 Track length = 300 km
 Time allowed for qualifying
 \[\Delta t = \frac{300}{0.029} = 1.03 \times 10^4 \text{ secs} \]
 Speed for 1st 150 km
 55 mph = 24.59 m/sec
 Time taken \[\Delta t_1 = \frac{150}{0.025} = 6 \times 10^3 \text{ secs} \]
 Time available for second half
 \[\Delta t - \Delta t_1 = (10.3 \times 10^3 - 6 \times 10^3) \text{ sec} \]
 = \[4.3 \times 10^3 \text{ sec} \]
 So speed required for 2nd half
 \[S = \frac{150 \times 10^3}{4.3 \times 10^3} = 34.88 \text{ m/sec} \]
 = 78 mph

2-5. \[r_1 = \sqrt{3^2 + 4^2} = 5 \text{ m} \]
 \[r_2 = \sqrt{3^2 + 4^2} = 5 \text{ m} \]
 \[r_3 = \sqrt{1 + 8 + 16} = 5 \text{ m} \]
 \[r_4 = \sqrt{1 + 16 + 8} = 5 \text{ m} \]

2-7. Av. Speed = distance travelled
 time taken
 \[= \frac{2\pi \times 100}{5 \times 60} = 2.1 \text{ m/sec} \]
 Av. Vel \(\langle v \rangle = \frac{\text{Displacement vector}}{\text{time elapsed}} \)
 = 0

2-9. \(v_{AB} \) positive
 \(v_{BC} = 0 \)
 \(v_{CD} \) negative
2-11. 55mph = 24.6 m/sec
Yes, you miss the deer.
Distance travelled in \(\frac{1}{3} \) sec = 8.2m

Distance travelled before stopping = \(\frac{0 - (24.6)^2}{-2 \times 2} \)
\[= 151.3 \text{m} \]

Total distance = 159.5m

2-13. \(V^2 = V_i^2 + 2a(X - X_i) \)
\(V = 200 \text{mph} \Rightarrow \dot{x} = 89.5 \text{ m/sec} \)
\(V_i = 0 \)
\((X - X_i) = 1100 \text{m} \)

So \(a = \frac{(89.5)^2}{2 \times 1100} = 3.6 \text{ m/s}^2 \)
\[a = 3.6 \text{ m/s}^2 \dot{x} \]