Two similar objects of mass, M, and radius, R, are launched from the edge of a cliff with initial speed, \(v_0 \), one vertically upward and the other vertically downward. If both ultimately fall to the valley floor H meters below, how many seconds, \(\Delta t \), is the object which was launched upward behind the other in hitting the valley floor? \(\Delta t = \)

a) \(\frac{gH}{v_0^2} \)

b) \(\frac{H}{v_0} \)

c) \(\frac{v_0}{g} \)

d) \(\frac{2v_0}{g} \)

e) None of the above
The correct delay time is \(d) \frac{2v_o}{g} \); as follows.

- The object launched upward arrives at its maximum height at the time, \(t^{\text{MAX}} \), when

- its vertical velocity falls to zero:

- Thus \(v = 0 = v_o - g \ t^{\text{MAX}} \)

 implies \(t^{\text{MAX}} = \frac{v_o}{g} \).

- Subsequently, it falls back to its launch height, arriving there at \(2 \ t^{\text{MAX}} = 2 \ \frac{v_o}{g} \),

- but now with a downward velocity, \(v_o \).

- Thence it follows the same trajectory of the downward launched particle, but delayed by \(\Delta t = 2 \ \frac{v_o}{g} \).