None of the above is true.

(a) Light traveling perpendicular to the earth's surface.
(b) An object of inertial mass, \(M \), would fall in \(S_A \) just like it does near the earth's surface.
(c) In \(S_A \) the law of gravitation.
(d) All of the above are true.
(e) None of the above is true.

A careful experiment with applied gravitational forces could in principle check whether \(M \), the inertial mass, is different from \(m \), the relativistic mass.

If the inertial pseudo-force in a frame, \(S_A \), accelerates at a rate, \(a = g \), with respect to an inertial frame were \(f_p = -mg \), then...
Therefore all of the above are true: d) is correct.

• Trajectory in S₄ is perpendicular to A in the inertial frame is a curved path.

• (c) is true because any straight line trajectory makes objects fall near Earth.

Fₚˢ = –mₐg, just like the gravitational force which makes the added pseudoforce is not exactly, or not indicating whether mₐ=m₁, or not.

• (b) is true because the added pseudoforce Fₚᵐₐ, +mₐg, which force would either cancel gravitational field, Fₚ/gravity = +mₐ would add a physical force.

• (a) is true because an experiment applying a

All of the above are true; as follows:

The correct answer is: