CARNOT'S MAXIMALLY EFFICIENT
CYCLIC HEAT ENGINE \(\Rightarrow \) 2nd LAW

\[
\text{Actual Efficiency} \quad \eta_{\text{actual}} = \frac{\text{Net Work}}{\text{Qin}} = \frac{\text{Qin} - \text{Qout}}{\text{Qin}} = 1 - \frac{\text{Qout}}{\text{Qin}}
\]

for any actual heat engine

\& CARNOT proved that

\[
\eta_{\text{CARNOT}} = 1 - \frac{T_c}{T_h}
\]

for CARNOT'S IDEALIZED HEAT ENGINE

AND also, by design of CARNOT ENGINE, that

\[
\eta_{\text{CARNOT}} > \eta_{\text{actual}}
\]

for any engine operating between \(T_h \) \& \(T_c \)

therefore

\[
\frac{\text{Qout}}{\text{Qin}} > \frac{T_c}{T_h}
\]

AND \(\text{Qout} > 0 \), since \(T_c > 0 \)

(by 3rd LAW)
(Equivalent!) Versions of 2nd Law of Thermodynamics

1) A heat engine **must** exhaust heat.
2) A refrigerator **must** consume work

Entropy of a closed system **must** increase.
CHANGE IN ENTROPY

\[\Delta S = \sum \frac{Q_i}{T_i} \] ← Definition of \(\Delta S \).

\[\text{For } Q \text{ transferred from } T_H \text{ to } T_c \]

\[\Delta S = \frac{Q}{T_c} - \frac{Q}{T_H} \]

Clearly, \(\Delta S > 0 \) iff \(T_H > T_c \)

\(\Delta S > 0 \) \(\iff \{ Q \text{ flows from } \text{Higher to Lower } T_i \} \)
For heat engine + surroundings:

\[\Delta S_{\text{univ.}} = \Delta S_{\text{surr}} + \Delta S_{\text{engine}} \]

\[= \frac{Q_{\text{in}}}{T_H} + \frac{Q_{\text{out}}}{T_C} + 0 \]

Because engine is same at end of cycle as at beginning,

\[\Delta S_{\text{univ.}} > 0 \implies \frac{Q_{\text{out}}}{T_C} > \frac{Q_{\text{in}}}{T_H} \]

\[\iff \frac{Q_{\text{out}}}{Q_{\text{in}}} > \frac{T_C}{T_H} : \text{Carnot's 2nd Law} \]

\[\Delta S_{\text{univ.}} > 0 \iff Q_{\text{out}} > 0 \]

Third form of 2nd Law

Is equivalent to 1st form!
Entropy & Probability

\[
S = k (\ln W)
\]

\(k = \) Boltzmann's constant per molecule

\(W = \) probability of microscopic state of system

Thus, increase of entropy in a process \(\iff \) movement towards a state of higher probability.