Black Body Spectrum:

Observed vs Classical Wave Theory

\[\frac{1}{\sqrt{2\pi}} \]

![Graph showing predicted and observed distributions with wave length relationship](graph.png)
Black Body Radiation

How Planck's Approximate Calculation of Classical Result

Suggested $E = h\nu$ as property of light demanded by the Radiation Data

Predicted Classical Distribution

Planck's Approximations to Classical Result using $E = \pi \nu F$ & various E-values

Planck's Approx with $E = 6.6 \times 10^{-34} \text{ J} \cdot \text{s} = h$

Observed Distribution

Wavelength $= \frac{c}{\nu} = \lambda$

$c = \text{Speed of light}$