sound waves measures that speed to be velocity, $V_T = 100$ m/s, in the same direction as the An observer on a train moving with constant measures the speed of sound to be $v_S = 343$ m/s. On a calm day an observer in a train station

$$\sqrt{a}$$
) $V_S - V_T = 243 \text{ m/s}$

b)
$$v_S + V_T = 443 \text{ m/s}$$

c) $v_S = 343 \text{ m/s}$

d)
$$V_T = 100 \text{ m/s}$$

243m/s. measured speed is $v_S - V_T =$ The correct answer is (a): the

This is because sound travels in the atmospheric wave as $v'_S = v_S - V_T$.; as follows, of the wave measures the speed of the sound observer moving with speed, V_T , in the direction medium. Then by Galilean Relativity, an medium at a fixed speed with respect to the

$$x = x' + Vt$$
, and $x' = x - Vt$;

Therefore,

$$v' = \Delta x'/\Delta t = \Delta x/\Delta t - V(\Delta t/\Delta t) = v - V$$