UNIFORM CIRCULAR MOTION

\[|\vec{v}| = \text{speed} = \text{constant} = |\vec{v}_f| = |\vec{v}_i| \]

\[R = \text{Radius of Circle; } m = \text{mass of object.} \]

\(\text{Net} \) applies \(\vec{F} = ma \) (as always!)

What \(F \) centripetal is required to keep \(m \) travelling in a circle of radius \(R \)?

(If we knew \(|\vec{a}| \) for circular motion, \(\text{Net} \) would give the answer.)

Dimensionally, \([\vec{a}] = \left[\frac{\Delta \vec{v}}{\Delta t} \right] = \frac{L}{T^2} = \frac{L}{T^2} \)

Proof: Assume \(a = v^2/R \), \(\Rightarrow \) Dimension \([a] = \text{Dimension}[v^2/R] \)

\[\frac{L}{T^2} = \left(\frac{L}{T} \right)^2 \cdot \frac{L}{T^2} \]

And only \(p=2, q=-1 \) can give correct dimensionality for \(a \):

Therefore \(|\vec{a}| \propto v^2/R \), by dimensionality alone: \(|\vec{a}| = \text{const. } v^2/R \).

In fact \(|\vec{a}| = v^2/R \), as we can prove from definition:

\[|\vec{a}| = \left| \frac{\Delta \vec{v}}{\Delta t} \right| = \lim_{t \to t_i} \frac{|\vec{v}_f - \vec{v}_i|}{t_f - t_i} \]

Enlarge:

\[\Delta \vec{a} = \frac{1}{2} \Delta \vec{r} \]

\[2 |\Delta \vec{v}| = |\Delta \vec{a}| = 2 \left(\sin \frac{\Delta \theta}{2} \right) \Delta t \]

Also \((\vec{v} \cdot \Delta \vec{t} = R \Delta \theta \) (if \(\theta \) is measured in radians)

And finally \((\sin \theta \approx \frac{\Delta \theta}{2} \text{ (for small } \Delta \theta \text{ in radians}) \)

so that \((\vec{a} \cdot \Delta t = 2vt \sin \frac{\Delta \theta}{2} \approx 2v \frac{\Delta \theta}{2} = v \Delta \theta \)

and \(|\vec{a}| = \left| \frac{\Delta \vec{v}}{\Delta t} \right| = \frac{v \Delta \theta}{\Delta t} = v/\frac{R}{R} \) \{using \(v/R = \frac{\Delta \theta}{\Delta t} \) from (c) \}.

\[|\vec{a}| = v^2/R \]

\(\text{Centripetal } = m \vec{a} = mv^2/R \)