Ch 2 Describing Motion in 1D

Q. When is an object at time, \(t \),
which started at \(x_0 \) at time, \(t_0 \),
with initial velocity, \(v_0 \),
if it moves with constant acceleration, \(a \)?

A. \[x(t) = x_0 + v_0 (t-t_0) + \frac{1}{2} a (t-t_0)^2. \]

(This simplifies to \[x = x_0 + v_0 t + \frac{1}{2} a t^2 \] \(\text{if } t_0 = 0 \).)

Q. What is its velocity at time \(t \)?

A. \[v(t) = v_0 + a t. \]

(This is slope of \(x(t) \) vs. \(t \) curve at the time \(t \).)

Q. What is the acceleration at time \(t \)?

A: \[a = \text{constant} \] is same for all \(t \).

(\(a \) is the slope of the \(v(t) \) vs. \(t \) curve,
which, being constant, guarantees that \(v(t) \) vs. \(t \) must be a straight line.)

The text should, but does NOT, present these 3 equations for kinematics under constant acceleration.