DILATION of Time for Moving Clocks

How it follows from \(c = \text{constant} = 3 \times 10^8 \text{ m/sec} \), the same in EVERY INERTIAL FRAME, that \(\Delta t = \gamma \Delta t' \)

where \(\Delta t \) is the time interval in the observer \(O \)'s rest frame \(S \),
and \(\Delta t' \) is the time measured by a clock moving with constant velocity, \(v \). (Note the the moving clock is at rest in another inertial frame \(S' \), whose observer, \(O' \), measures \(\Delta t' = 2\Delta \)

for this same time interval.)

From \(O' \)'s viewpoint at rest on \(S' \), the clock moves with speed \(v \) a distance
\(D = V \Delta t \) in time \(\Delta t \). Then Fig 10-8 (below) shows that for \(O \), the
light pulse of moving

\[\sqrt{D^2 + L^2} = 2H \]

in time, \(\Delta t \).

Since light travels with speed \(c \), \(D = V \Delta t \),

\[\Delta t = 2\Delta \]

Then we square both sides to solve for \(\Delta t' \):

\[\Delta t'^2 = \frac{1}{\gamma^2} \left(\Delta^2 + \Delta' \right)^2 \]

\[\Delta t' \Delta t = \frac{\Delta^2}{\gamma^2} = \frac{(\Delta t')^2}{(\Delta t)^2} \]

Since \(2\Delta \) is \(\Delta t' \), the time per tick measured by \(O \) with this clock at rest in his frame \(S \).

Thus, \(\Delta t = \sqrt{1 - \frac{V^2}{c^2}} \Delta t' \), \(\gamma = \Delta t' / \Delta t \), \(\gamma \) always > 1.

An observer \(O \) in \(S \) observes this moving clock to tick once each \(\Delta t = \gamma \Delta t' \), when \(\gamma = \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}} \), always > 1.

Thus time passes more slowly in a moving frame. E.g., living things age more slowly.