The Ideal Gas Law: \(PV = nRT_A = NkT_A \), and the inference that \(\frac{3}{2} kT_A = \langle KE \rangle = \frac{1}{2} m v^2 \) of a gas molecule can be obtained by elementary considerations, as follows.

Take the container to be a cube \(L \) on each side.

Assume that each gas particle has speed \(v \) and all velocity directions equally probable. Then

1. Compute the average force exerted by the particles hitting the right side of the cube & divide this Avg. Force by \(L^2 = \text{Area of Right Face} \) to obtain \(P = \frac{|F_{AVG}|}{A_R} = |F_R|/L^2 \).

2. To compute \(|F_{AVG}| \), consider one molecule of gas, which has x-component of \(\vec{v} \) of \(-v_x\) as it hits the right face. It rebounds elastically with a final x-component of velocity, \(-2v_x\). Its x-component of momentum is changed by \(\Delta p_x = -mv_{xf} - (-mv_x) = -2mv_x \).

3. This requires an impulse \(\vec{F} \cdot \Delta t = -2mv_x \), where \(\vec{F} \) is the force exerted by the wall on the \(i \)th molecule during the collision. And the force on the face is \(\vec{F}_i = +2mv_x/\Delta t \), by Newton's 3rd Law.

4. Compute the rate, \(R \), at which molecules strike the right face, assuming that there are \(N \) molecules in the box. During a small interval \(\Delta t \), all of the molecules within \(v_x \Delta t \) on the right face which are travelling to the RIGHT will hit the face. Therefore \(\frac{RAT = \frac{N}{L^2} v_x \Delta t}{N} \) molecules hit the right face during \(\Delta t \). [The fraction of fast molecules is \(\frac{RAT = \frac{N}{L^2} v_x \Delta t}{N} \).]

5. The average force on the right face during a small interval \(\Delta t \) is the product of \(\vec{F}_i \) for one molecule times the \(N/2 \) of molecules hitting during \(\Delta t \): \(F_{RAT} = (\vec{F}_i) \cdot (N/2 \Delta t) = \left(\frac{2mv_x}{L^2} \right) \left(\frac{N}{2} \right) v_x \Delta t = \frac{N}{2L^2} m v_x^2 \).

6. The Pressure is \(P = \frac{F_{RAT}}{L^2} = \frac{1}{L^2} \frac{N}{2} m v_x^2 = \frac{1}{2} \frac{N}{L^2} m v_x^2 = \frac{1}{2} N \langle m v_x^2 \rangle \); \(PV = N\langle m v_x^2 \rangle = kT \).

Thus \(\frac{3}{2} kT_A = \frac{1}{3} \langle m v_x^2 \rangle \) or \(\frac{3}{2} kT_A = \frac{1}{3} [m (v_x^2 + v_y^2 + v_z^2)] = \frac{2}{3} \langle KE \rangle \); Thus the average \(\langle KE \rangle \) of a molecule \(\langle KE \rangle = \frac{3}{2} kT_A \), the Ideal Gas Law follows.