Newton's Gravitation \(F_g = G M_s \frac{m_p}{R_{sp}^2} \)

(applied to planetary motion around Sun) and

centripetal acceleration for circular motion, \(\frac{v_p^2}{R_{sp}} \),

Combine to yield \[\text{Kepler's IIIrd Law, } T_p^2 = (\text{const}) R_{ps}^3 \]

(a) \(v_p = \frac{2\pi R_{ps}}{T_p} \) relates speed of planet to its period, \(T_p \).

(b) \[F_g = G M_s \frac{m_p}{(R_{sp})^2} = m_p \left(\frac{\pi^2}{4} \right) \frac{R_{ps}^2}{T_p^2} \]

\[\frac{R_{ps}^2}{(G M_s)} = \frac{v_p^2}{4\pi^2} \Rightarrow T_p^2 = \left(\frac{4\pi^2}{G M_s} \right) R_{ps}^3 \quad (\text{Q.E.D.)} \]

Q.E.D. = "Quad Erat Demonstrandum" \(\Rightarrow " \) What had to be proven" (... nice phrase!)

A constant, \((4\pi^2/G M_s) \), does not change from one planet to another.

Note that once the planet's distance from Sun is known, its period (i.e., its planetary year) is fixed.

**

Kepler's laws can also be applied to EARTH Satellites in circular orbits... in which case M_s must be replaced by ME.

E.g., the height of a \textbf{Geosynchronous earth satellite} can be calculated from Kepler's III, as follows. (a) \(T = 24 \) hours for geosynchronous satellite \((= 24 \times 3600 \text{ sec} = 8.64 \times 10^4 \text{ sec} = T) \). Thus,

(b) \[R^3 = \left(\frac{G M_E}{4\pi^2} \right) T^3 \quad \Rightarrow \quad \left(\frac{R}{R_E} \right)^3 = \left(\frac{G M_E}{4\pi^2 R_E^3} \right) R_E^3 = \frac{3}{4\pi^2} \frac{T^2}{R_E^2} ; \text{ and} \]

(c) \[\left(\frac{R}{R_E} \right) = \left(\frac{9T^2}{4\pi^2 R_E} \right)^{1/3} = \left(\frac{9 \times 24^2 \times 3600^2 \times 10^8}{4\pi^2 (6.37 \times 10^3)} \right)^{1/3} \]

\[= \sqrt[3]{2.91 \times 10^2} = 6.6 \approx 6.6 \]

(d) i.e., \(R = R_E + h = 6.6 \) RE

\[\frac{h}{R} \approx 5.6 \text{ RE} \]

** Just divide both sides by \(R^3 \), to confirm \(\frac{G M_E}{R_E^3} \).