Plot how force of friction varies w. Applied Force

\(F_{\text{friction}} \) vs. Force vector (e.g., force on box on floor):

- \(F_{\text{friction}} = \mu_s |N| \)
 - \(\mu_k < \mu_s \) always

- \(F_{\text{friction}} \) up to \(F_{\text{max}} = \mu_s |N| = \mu_s Mg \)

Magnitude of Frictional Force:

- Object at Rest: \(|\vec{F}_{\text{static}}| = |\vec{F}_{\text{Applied}}| \leq \mu_s |\vec{N}| = \mu_s Mg = |\vec{F}_{\text{static}}| \)

- Object Sliding: \(|\vec{F}_{\text{friction}}| = \mu_k |\vec{N}| = \mu_k Mg \) (< \(\mu_s Mg \), always)

Once \(|\vec{F}_{\text{Applied}}| \) exceeds \(|\vec{F}_{\text{static}}| \),

Object begins to slide and to Accelerate by \(\vec{a} \),

Since \(\text{Net Force} = \vec{F}_{\text{Applied}} - \vec{F}_{\text{friction}} > 0 \).