Flashlights

Question:

If you remove the 2 batteries from a working flashlight and reinstall them backward so that they make good contact inside, will the flashlight still work?

Observations About Flashlights

- They turn on and off with a switch
- More batteries usually means brighter
- The orientation of multiple batteries matters
- Flashlights dim as batteries age
- Sometimes smacking a flashlight brightens it

A Battery

- Battery "pumps" charge from end to + end
 - Chemical potential energy is consumed
- Electrostatic potential energy is produced
- Current undergoes a rise in voltage
 - Alkaline cell: 1.5 volt rise
 - Lead-acid cell: 2.0 volt rise
 - Lithium cell: 3.0 volt rise
- Chain of cells produces larger voltage rise

A Light Bulb

- Structure
 - Contains a protected tungsten filament
 - Filament conducts electricity, but poorly
- Filament barely lets charge flow through it
 - Electrostatic potential energy is consumed
 - Thermal energy is produced
- Current undergoes a drop in voltage
 Two-cell alkaline flashlight: 3.0 volt drop

A Simple Circuit

- A battery the energy source
- A wire the outgoing current path
- A light bulb the energy destination (the load)
- A wire the return current path

Circuits 1

- Steady current requires a circuit path (a loop) - Charge mustn't accumulate anywhere
 - A closed conducting loop avoids accumulation
- Steady current flow requires energy
 - Currents lose energy (and voltage) in conductors
 - Missing energy becomes thermal energy
 - Lost energy must be replaced

Circuits 2

- A circuit can transport energy
 - Current obtains energy from a battery
 - Current delivers energy to a light bulb
 - Current starts the trip over again

Question:

If you remove the 2 batteries from a working flashlight and reinstall them backward so that they make good contact inside, will the flashlight still work?

Recharging a Battery

- Forward (discharging) current flow
 - Battery "pumps" charge from end to + end
 - Current undergoes voltage rise
 - Battery's chemical potential energy is consumed
- Reverse (recharging) current flow
 - Circuit "pushes" charge from + end to end
 - Current undergoes voltage drop
 - Battery's chemical potential energy is replenished

Positive Charge

- Current points in the direction of *positive* flow
- Flow is really *negative* charges (electrons)
- It's hard to distinguish between:
 - negative charge flowing to the right
 - positive charge flowing to the left
- We pretend that current is flow of + charges
- It's really charges flowing the other way

Short Circuits

- If a conducting path bridges the load
 - Current bypasses the load
 - Circuit is abbreviated or "short"
- No appropriate energy destination (load)
- Energy loss and heating occurs in the wires
- A recipe for fires!

Power

- Power is energy per unit of time
- Power is measured in joules/second or watts
- Batteries are power sources
- Loads are power consumers

Battery Power

- Current: units of charge pumped per second
- Voltage rise: energy given per unit of charge

current \cdot voltage rise = power produced

Load Power

- Current is units of charge passed per second
- Voltage drop: energy taken per unit of charge

current \cdot voltage drop = power received