Question:
When you look up at the sky during the day, is the light from distant stars reaching your eyes?

Observations About Sunlight
- Appears whiter than most light
- Casts shadows
- Makes the sky appear blue
- Becomes redder at sunrise and sunset
- Reflects from many surfaces, not all metallic
- Bends and separates into colors in materials

Light
- Medium-wavelength electromagnetic waves
- The range of wavelengths we can see

Spectrum of Sunlight
- Thermal agitation make charges accelerate
- Highly agitated charges emit light
- The sun is a black-body at 5800° C

Rayleigh Scattering
- Passing sunlight polarizes particles in air
- Fluctuating polarization → light emission
- Air particles scatter light (absorb & reemit)
- Air particles too small to be good antennas
- Long-wavelengths (reds) scatter poorly
- Shorter-wavelengths (violets) scatter better
- Scattered light is bluish in appearance
Question:
When you look up at the sky during the day, is the light from distant stars reaching your eyes?

Refraction
- Polarization of matter delays light’s passage
- Light slows as it passes through matter
- As sunlight slows, it bends – refraction
 - On slowing, bend is toward normal line
- As sunlight speeds up, it also refracts
 - On speeding up, bend is away from normal line
- Index of refraction
 - factor by which light’s speed is reduced

Reflection
- Light polarizes different materials differently
- In different materials, light has different
 - speeds of travel
 - relationships between electric & magnetic fields
- These changes lead to reflections
 - As sunlight slows, some of it reflects
 - As sunlight speeds up, some of it reflects

Dispersion
- Light’s speed in a material depends on color
- Violet light usually moves slower than red
- Refraction (bending) depends speed change
- Violet light usually bends more than red

Rainbows
- Refraction, reflection, and dispersion

Interference
- Light from different paths can interfere
 - Constructive – fields are in same direction
 - Destructive – fields are in opposite directions
- The two reflections from a film interfere
- Different colors may interfere differently
Reflection of Polarized Light

• Angled reflection varies for polarized light
• Fluctuating electric field parallel to surface
 – large fluctuating surface polarization
 – big reflection
• Electric field perpendicular to surface
 – small fluctuating surface polarization
 – small reflection

Polarized Sunlight

• Most glare is horizontally polarized light
• Polarizing sunglasses
 – block horizontally polarized light
 – block glare from horizontal surfaces
• Much of the blue sky is polarized light, too